Efficient Route to Chiral Epoxides
TABLE 5. Meth od s Used to Assa y En a n tiom er ic Excess.
Chiral aziridines are important intermediates in organic
synthesis19 and are present in several in bioactive
molecules (e.g., radiation sensitizers and enzyme inhibi-
tors).20 Chiral â- and γ-amino alcohols are important
structural elements in chiral ligands for asymmetric
catalysis21 as well as in biologically active compounds
(e.g., â-adrenergic receptor blockers and immune stimu-
lants).22
substrate
ee assay
conditionsa
tR (R)
tR (S)
1a
2a
1b
2b
1c
2c
1d
2d
1e
2e
1f
GC
GC
GC
GC
GC
GC
GC
GC
GC
GC
GC
GC
HPLC
HPLC
HPLC
HPLC
GC
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
C
C
23.5
21.9
25.1
24.8
23.7
22.2
24.2
23.1
25.8
25.4
23.6
23.1
31.1
12.3
32.2
18.7
26.5
26.9
23.3
22.4
25.3
25.0
23.5
22.6
24.0
23.4
25.7
25.5
23.7
23.3
18.5
13.4
34.1
16.9
26.6
27.0
Exp er im en ta l Section
Gen er a l Exp er im en ta l P r oced u r es. All reactions were
carried out under dry argon atmosphere using standard
Schlenck techniques. Solvents were purified by standard
procedures. Solvents for HPLC use were spectrometric grade.
All other reagents are commercially available and were used
without further purification. Racemic â-halo alcohols 1b-e,i
were obtained from the corresponding commercially available
halo ketones 5 by reduction with sodium borohydride under
standard conditions. â-Halo alcohols 1f-h were prepared by
ring opening of the corresponding epoxide by LiCl and CuCl2
in THF.23 Racemic â-halo acetates 2 were obtained from the
corresponding alcohols by reaction with acetic anhydride under
standard conditions. Acyl donor 3 was prepared according to
a literature procedure.3b Ruthenium catalyst 4 was synthesized
according to a literature procedure4a and recrystallized from
CH2Cl2/pentane prior to use. Lipases PS-C type II and AK were
a generous gift from Amano Pharmaceutical Co. Ltd.
1H and 13C NMR spectra were recorded in CDCl3 at 400 and
100 MHz, respectively. Solvents for extraction and chroma-
tography were technical grade and distilled before chroma-
tography was performed with Merck 60 silica gel. The enan-
tiomeric excess of compounds 1a -f,i and 2a -f was determined
by analytical GC employing a CP-Chirasil-Dex CB column
using racemic compounds as references. The enantiomeric
excess of all the other compounds was determined by GC
analysis on a Daicel, Chiracel OD-H column using racemic
compounds as references (Table 5).
2f
1g
2g
1h
2h
1i
2i
GC
a
Conditions A: 110 °C, 20 min; 20 °C/min to 200 °C. Conditions
B: hexane/2-propanol ) 9:1, 0.5 mL/min. Conditions C: 80 °C, 20
min; 10 °C/min to 200 °C.
evaporated, and the residue was analyzed. The product (S)-
2a was obtained in 45% conversion and in 98% ee. The 1H
NMR data are in agreement with those previously reported.12
13C NMR δ 21.2, 46.7, 75.3, 126.8, 128.9, 129.3, 137.4, 170.1.
(S)-1-Ch lor o-2-acetoxy-2-(p-m eth oxyph en yl)eth an e ((S)-
2
2b).24 1H NMR δ: 2.11 (s, 3H), 3.67 (dd, 1H, J H-H ) 11.6 Hz,
2
3
3J H-H ) 4.8 Hz), 3.77 (dd, 1H, J H-H ) 11.6 Hz, J H-H) 8.0
3
3
Hz), 3.80 (s, 3H), 5.89 (dd, 1H, J H-H ) 8.0 Hz, J H-H ) 4.6
Hz), 6.90 (m, 2H), 7.25 (m, 2H). 13C NMR, δ: 21.2, 46.6, 55.5,
75.0, 114.3, 128.3, 129.5, 160.1, 170.2.
(S)-1-Ch lor o-2-a cetoxy-2-(p-flu or op h en yl)eth a n e ((S)-
2c). The 1H NMR data are in agreement with those previously
reported.15 13C NMR, δ: 21.1, 46.5, 74.5, 115.8 (d, J C-F ) 28
Hz), 128.8 (d, J C-F ) 11.2 Hz), 133.2, 162.5 (d, J C-F ) 286.2
Hz), 170.0.
Gen er a l P r oced u r e for th e KR of Ha lo Alcoh ols. (S)-
1-Ch lor o-2-a cetoxy-2-p h en yleth a n e ((S)-2a ). In a typical
experiment, PS-C lipase (20 mg) was added to a solution of
1a (31.2 mg, 0.2 mmol) and 3 (102 mg, 0.6 mmol) in dry toluene
(2 mL) under argon. The resulting reaction mixture was stirred
at 60 °C for 5 h. The enzyme was then filtered off and washed
with toluene (3 × 5 mL). The combined toluene phases were
(S)-1-Br om o-2-a cetoxy-2-p h en yleth a n e ((S)-2d ).24 1H
2
3
NMR, δ: 2.08 (s, 3H), 3.59 (dd, 1H J H-H ) 10.8 Hz, J H-H
)
2
3
4.8 Hz), 3.65 (dd, 1H, J H-H ) 10.8 Hz, J H-H) 8.0 Hz), 5.97
(dd, 1H, J H-H ) 8.0 Hz, J H-H ) 4.8 Hz), 7.46 (m, 5H). 13C
NMR, δ: 21.2, 34.5, 75.1, 126.8, 128.9, 129.0, 137.9, 170.1.
(S)-1-Br om o-2-acetoxy-2-(p-m eth oxyph en yl)eth an e ((S)-
2e). The 1H NMR data are in agreement with those previously
reported.12 13C NMR, δ: 22.2, 45.2, 55.5, 74.8, 114.3, 128.2,
129.9, 160.2, 170.1.
3
3
(16) See, for instance: (a) Hamamoto, H.; Mamedov, V. A.; Kitamoto,
M.; Hayashi, N.; Tsuboi, S. Tetrahedron: Asymmetry 2000, 11, 4485.
(b) He, L.; Byun, H.-S.; Bittman, R. J . Org. Chem. 1998, 63, 5696. (c)
Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. J . Org. Chem. 1999,
64, 6094.
(17) See, for example: (a) Wade, P. A.; Bereznak, J . F.; Palfey, B.
A.; Carroll, P. J .; Dailey, W. P.; Sivasubramanian, S. J . Org. Chem.
1990, 55, 3045. (b) Mitchell, D.; Koenig, T. M. Synth. Commun. 1995,
25, 1231.
(18) See, for instance: (a) Chini, M.; Crotti, P.; Macchia, F. J . Org.
Chem. 1991, 56, 5939. (b) Prabhakaran, E. N.; Rajesh, V.; Dubey, S.;
Iqbal, J . Tetrahedron Lett. 2001, 42, 339. (c) Chuang, T.-H.; Sharpless,
K. B. Org. Lett. 2000, 2, 3555. (d) Tremblay, M. R.; Wentworth, P.;
Lee, G. E.; J anda, K. D. J . Comb. Chem. 2000, 2, 698.
(19) Deyrup, J . A. In The Chemistry of Heterocyclic Compounds;
Hassner, A., Ed.; J ohn Wiley & Sons: New York, 1993.
(20) (a) Tomasz, M.; J ung, M.; Verdine, G.; Nakanishi, K. J . Am.
Chem. Soc. 1984, 106, 7367. (b) Danishefsky, S.; Ciufolini, M. J . Am.
Chem. Soc. 1984, 106, 6424.
(21) (a) Blasser, H.-U. Chem. Rev. 1992, 92, 935. (b) Kolb, H. C.;
Van Nieeuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
(c) Pfaltz, A. In Advances in Catalytic Processes; Doyle, M. P., Ed.; J AI
Press: Greenwich, CT, 1995.
(S)-1-Ch lor o-2-a cetoxy-3-p h en ylp r op a n e ((S)-2f).25 1H
3
NMR, δ: 2.06 (s, 3H), 2.98 (d, 2H, J H-H ) 6.8 Hz), 3.50 (dd,
2
3
2
1H, J H-H ) 11.6 Hz, J H-H ) 5.0 Hz), 3.62 (dd, 1H, J H-H
)
11.6 Hz, 3J H-H ) 4.2 Hz), 5.21 (m, 1H), 7.28 (m, 5H). 13C NMR,
δ: 21.2, 37.7, 44.9, 73.6, 127.1, 128.8, 129.6, 136.3, 170.5.
(S)-1-Ch lor o-2-a cetoxy-3-p h en oxyp r op a n e ((S)-2g).26 1
H
)
2
3
NMR, δ: 2.11 (s, 3H), 3.77 (dd, 1H, J H-H ) 11.6 Hz, J H-H
2
3
5.2 Hz), 3.85 (dd, 1H, J H-H ) 11.6 Hz, J H-H) 4.8 Hz), 4.16
(m, 2H), 5.32 (m, 1H), 6.92 (m, 2H), 6.99 (m, 1H), 7.28 (m,
2H). 13C NMR, δ: 21.1, 42.7, 66.1, 71.3, 114.8, 121.7, 129.8,
158.4, 170.4.
(S)-1-Ch lor o-2-a cetoxy-3-(1-n a p h th oxy)p r op a n e ((S)-
2h ).11 1H NMR, δ: 2.14 (s, 3H), 3.83 (dd, 1H, 2J H-H ) 11.6 Hz,
2
3
3J H-H ) 5.2 Hz), 3.90 (dd, 1H, J H-H ) 11.6 Hz, J H-H ) 4.8
Hz), 4.30 (m, 2H), 5.41 (m, 1H), 7.17 (m, 2H), 7.36 (m, 1H),
7.46 M, 1H), 7.76 (m, 4H). 13C NMR, δ: 21.2, 42.8, 66.3, 71.3,
107.3, 118.8, 124.2, 126.8, 127.0, 127.9, 129.5, 129.8, 134.6,
156.4, 170.4.
(22) (a) Powell, J . R.; Waimer, I. W.; Drayer, D. E. In Drug
Stereochemistry Analytical Methods and Pharmacology; Marcel Dek-
ker: New york, 1998. (b) C. P. Kordik, A. B. Reitz, J . Med. Chem. 1999,
42, 181.
(24) Cozens, L.; O′Neill, M.; Bogdanova, R.; Schepp, N. J . Am. Chem.
Soc. 1997, 119, 10652
(23) Hoff, B. H.; Anthosen, T. Tetrahedron: Asymmetry 1999, 10,
1401.
(25) Kim, M. J .; Cho, H. J . Chem. Soc., Chem. Commun. 1992, 1411.
(26) Hoff, B. H.; Anthosen, T. Chirality 1999, 11, 760.
J . Org. Chem, Vol. 67, No. 25, 2002 9009