C O M M U N I C A T I O N S
Table 1. Catalytic Hydrogenation of Cyclopropyl Substrates with
(PPh3)3RhCl
entrya
R
tofb
1
2
3
4
5
6
7
OSiMe3
OH
OAc
OCH2CH2CH2CH3
OCH2CH3
C(O)(2-C4H3S)
0.98
0.25
0.56
2.4
0.21
0.25
0.25
most hindered carbon-carbon bond. Further studies aimed at
elucidating the mechanistic details of both catalytic reactions as
well as coupling them to additional organometallic bond-forming
reactions are now in progress.
c
c
Acknowledgment. We would like to thank the Coates group
for access to their gas chromatograph, Johnson-Matthey for a gift
of iridium trichloride hydrate, and the Department of Chemistry
and Chemical Biology at Cornell University for generous financial
support.
CH2CH2CH3
a 2.75 mM (PPh3)3RhCl and 0.138 M substrate in anhydrous toluene.
b Turnover frequency determined with 4 atm of H2 at 18 h. c Undergoes
alkane dehydrogenation of the alkyl chain to a mixture of internal olefins.
Table 2. Catalytic Olefination of Cyclopropyl Substrates with
(PPh3)3RhCl
Supporting Information Available: Results for catalytic hydro-
genation of cPrCH2OSiMe3 as a function of metal catalyst and all
experimental procedures (PDF). This material is available free of charge
entrya
R
tofb
1.78
no reaction
0.28
no reaction
0.68
0.92
References
1
2
3
4
5
6
7
OSiMe3
OH
OAc
(1) Murakami, M.; Ito, Y. In ActiVation of UnreactiVe Bonds and Organic
Synthesis; Murai, S., Ed.; Springer: Berlin, 1999; p 97.
(2) (a) Tipper, C. F. H. J. Chem. Soc. 1955, 2045. (b) Periana, R. A.; Bergman,
R. G. J. Am. Chem. Soc. 1986, 108, 7346. (c) Wick, D. D.; Northcutt, T.
O.; Lachicotte, R. J.; Jones, W. D. Organometallics 1998, 17, 4484.
(3) Cassar, L.; Eaton, P. E.; Halpern, J. J. Am. Chem. Soc. 1970, 92, 3515.
(4) (a) Murakami, M.; Amii, H.; Ito, Y. Nature 1994, 370, 540. (b) Perthuisot,
C.; Jones, W. D. J. Am. Chem. Soc. 1994, 116, 3647. (c) Barrett, A. G.
M.; Tam, W. J. Org. Chem. 1997, 62, 7673.
(5) Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. J. Am. Chem. Soc. 1996,
118, 8285.
(6) (a) Edelbach, B. L.; Lachiotte, R. J.; Jones, W. D. J. Am. Chem. Soc.
1998, 120, 2843. (b) Sugimura, T.; Ryu, I. J. Synth. Org. Chem. Jpn.
2000, 58, 1100.
(7) (a) Iverson, C. N.; Jones, W. D. Organometallics 2001, 20, 5745. (b)
Wender, P. A.; Pedersen, T. M.; Scanio, M. J. C. J. Am. Chem. Soc. 2002,
124, 15154.
(8) (a) Itazaki, M.; Nishihara, Y.; Osakada, K. J. Org. Chem. 2002, 67, 6889.
(b) Bessmertnykh, A. G.; Blinov, K. A.; Grishin, Y. K.; Donskaya, N.
A.; Tveritinova, E. V.; Yur’eva, N. M.; Beletskaya, I. P. J. Org. Chem.
1997, 62, 6069.
(9) Anton, D. R.; Crabtree, R. H. Organometallics 1982, 1, 855.
(10) For alkane dehydrogenation mediated by (PPh3)3RhCl, see: Fujii, T.; Saito,
Y. Chem. Commun. 1990, 757.
(11) (a) For alkane dehydrogenation that is dependent on the presence of
dihydrogen for activity, see: Goldman, A. S. J. Am. Chem. Soc. 1991,
113, 6706. (b) The terminal olefin is formed initially, undergoing
isomerization under the reaction conditions.
c
OCH2CH2CH2CH3
OCH2CH3
C(O)(2-C4H3S)
CH2CH2CH3
0.05
a 2.75 mM (PPh3)3RhCl and 0.138 M substrate in anhydrous toluene.
b Turnover frequency determined at 18 h. c Undergoes alkane dehydroge-
nation of the alkyl chain to a mixture of internal olefins.
course of 55 h, whereas the catalytic hydrogenation or olefination
of I is complete within 6 h. Likewise, both of these catalytic
processes can be conducted at temperatures as low as 100 °C. In
addition to (PPh3)3RhCl, other catalysts such as [Rh(COD)Cl]2 and
Pd(PPh3)4 are effective for the chelate-assisted hydrogenation or
olefination protocol.
Catalytic carbon-carbon bond activation may also be coupled
to hydrosilylation. In a one-pot procedure, olefination of I followed
by addition of Et3SiH under conditions where (PPh3)3RhCl is active
for hydrosilylation16 produced the terminal silane in >95% yield
(eq 3). As typically observed with olefin hydrosilylation reactions,
mixtures of internal alkenes undergo isomerization and hydrosilyl-
ation to the terminal product.16
In summary, we have successfully coupled carbon-carbon bond
activation to reactions traditionally available to metal alkyls. Using
commercially available catalysts under convenient laboratory condi-
tions, we have achieved catalytic hydrocarbon functionalization.
Introduction of functional groups such as [PPh2] is effective in
promoting accelerated reactions with exclusive selectivity for the
(12) Krogh-Jesperson, K.; Czerw, M.; Summa, N.; Renkema, K. B.; Achord,
P. D.; Goldman, A. S. J. Am. Chem. Soc. 2002, 124, 11404.
(13) Rybtchinski, B.; Milstein, D. Angew. Chem., Int. Ed. 1999, 38, 870.
(14) It is important to note in the case of entry 3 (Tables 1 and 2), coordination
of the carbonyl group and C-C oxidative addition would provide a [3.1.1]
bicyclo intermediate, whereas a [2.1.1] intermediate is anticipated for I.
(15) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.;
Butterworth Heinemann: Oxford, 1984; pp 1133-1137.
(16) Dickers, H. M.; Haszeldine, R. N.; Malkin, L. S.; Mather, A. P.; Parish,
R. V. J. Chem. Soc., Dalton Trans. 1980, 308.
JA028912J
9
J. AM. CHEM. SOC. VOL. 125, NO. 4, 2003 887