than the parent hormone 1, which may be due to greater
conformational flexibility at the bis-methylene unit. In the
present study, we show that substitution of the cysteines with
L-allylglycine residues allows RCM for facile generation of
more rigid olefinic analogues of 1 and provides access to
the saturated dicarba derivative (Figure 1).
of oxytocin on Rink amide NovaGel resin in conjunction
with standard Fmoc chemistry for amino acid coupling
(Scheme 1).11 This resin conveniently provides the C-terminal
Scheme 1. Synthesis of the Linear Peptide Backbonea
a Conditions: (a) Fmoc-Leu-OH, (b) Fmoc-Pro-OH, (c) Fmoc-
allylglycine-OH, (d) Fmoc-Asn(N-Trt)-OH, (e) Fmoc-Gln(N-Trt)-
OH, (f) Fmoc-Ile-OH, (g) Fmoc-Tyr(O-tBu)-OH, (h) Fmoc-allyl-
glycine-OH.
Figure 1. RCM Strategy for Peptidic Dicarba Analogues
Ruthenium-catalyzed RCM has been previously achieved5,6
on an assortment of peptidic diene systems1,7,8 with varying
yields. To date, the cyclization of bis-allylglycine-containing
peptides to make hormone analogues has not been reported,
nor have such olefinic analogues been investigated for
biological activity. It is interesting that the X-ray crystal
structure of free oxytocin 1 does not allow exact determi-
nation of the conformation at the disulfide,9 although this is
clearly fixed in a single orientation upon binding to a
neurophyseal carrier protein.10
amide functionality upon cleavage. Protection of the side
chains of tyrosine (O-tBu), asparagine (N-Trt), and glutamine
(N-Trt) with acid-labile groups is essential. The trityl (Trt)
groups ensure optimal coupling by preventing tandem
cyclization and dehydration of the primary amide side
chains,12,13 whereas the tert-butyl group is necessary to avoid
interference of the phenol in the RCM reaction.
Resin-bound linear peptide 2 could then be cyclized using
10 mol % Grubbs (benzylidene-bis(tricyclohexyl-phosphine)-
dichlororuthenium) catalyst6,7 to give a mixture of olefinic
products. Upon completion of this reaction, it is essential to
add DMSO (50 equiv relative to the catalyst loading) to the
resin-bound peptide. Failure to do so results in the production
of a mixture of products and ruthenium-containing contami-
nants that is exceedingly difficult to separate, even by
reverse-phase HPLC. This technique is an adaptation of a
literature procedure14 wherein DMSO was added to a
solution-phase RCM reaction unrelated to peptide synthesis.15
Removal of the remaining Fmoc group followed by acidic
cleavage from the resin with concomitant side chain depro-
tection affords a 4:1 mixture of cis and trans isomers 3 and
4, respectively (Scheme 2).
The synthesis is initiated by first building the linear peptide
backbone 2 using allyglycine in place of cysteine residues
(5) For recent reviews, see: (a) Furstner, A. Angew. Chem., Int. Ed. 2000,
39, 3012-3043. (b) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413-
4450. (c) Schuster, M.; Bechert, S. Angew. Chem., Int. Ed. Engl. 1997, 36,
2036-2056. (d) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res.
1995, 28, 446-452.
(6) Second generation imidazole/imidazoline Grubbs catalyst: (a) Mor-
gan, J. P.; Grubbs, R. H. Org. Lett. 2000, 2, 3153-3155. (b) Briot, A.;
Bujard, M.; Gouverneur, V.; Nolan, S. P.; Mioskowski, C. Org. Lett. 2000,
2, 1517-1519. (c) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org.
Lett. 1999, 1, 953-956. (d) Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen,
J. L. J. Am. Chem. Soc. 1999, 121, 2674-2678.
(7) Examples of RCM on peptides in solution: (a) Reichwein, J. F.;
Liskamp, R. M. J. Eur. J. Org. Chem. 2000, 2335-2344. (b) Reichwein, J.
F.; Versluis, C.; Liskamp, R. M. J. J. Org. Chem. 2000, 65, 6187-6195.
(c) Reichwein, J. F.; Versluis, C.; Liskamp, R. M. J. J. Org. Chem. 2000,
65, 6187-6195. (d) Kasmaier, U.; Maier, S. Org. Lett. 1999, 1 (11), 1763-
1766. (e) Gao, Y.; Wei, C.; Burke, T. R., Jr. Org. Lett. 2001, 3 (11), 1617-
1620.
(8) Examples of RCM on resin-bound peptides. (a) Schmiedeberg, N.;
Kessler, H. Org. Lett. 2002, 4 (1), 59-62. (b) Jarvo, E. R.; Copeland, G.
T.; Papaioannou, N.; Bonitatebus, P. J., Jr.; Miller, S. J. J. Am. Chem. Soc.
1999, 121, 11638-11643. (c) Schafmeister, C. E.; Po, J.; Verdine, G. L. J.
Am. Chem. Soc. 2000, 122, 5891-5892.
(11) (a) Adams, J. H.; Cook, R. M.; Hudson, D.; Jammalamadaka, V.;
Lyttle, M. H.; Songster, M. F. J. Org. Chem. 1998, 63, 3706-3716. (b)
Sieber, P.; Rinker, B. Tetrahedron Lett. 1991, 32, 739-742.
(12) Novabiochem Catalog 2002-2003; Calbiochem-Novabiochem Inc.,
San Diego, CA.
(13) Several peptide syntheses were done using asparagine and glutamine
subunits without side chain protection in the presence of an extra 1 equiv
of HOBt.10 In all attempts, a substantial amount of dehydrated product was
obtained, as shown by ES/MS as a (M-18) peak.
(14) Ahn, Y. M.; Yang, K.; Georg, G. I. Org. Lett. 2001, 3, 9, 1411-
1413.
(15) To our knowledge, this is the first time ruthenium byproducts have
been removed using simple DMSO injection and filtration when working
with resin-bound peptides.
(9) Wood, S. P.; Tickle, I. J.; Treharne, A. M.; Pitts, J. E.; Mascarenhas,
Y.; Li, J. Y.; Husain, J.; Cooper, S.; Blundell, T. L.; Hruby, V. J.; Buku,
A.; Fischman, A. J.; Wyssbrod, H. R. Science 1986, 232 (4750), 633-636.
(10) Rose, J. P.; Wu, C.; Hsiao, C.; Breslow, E.; Wang, B. Nat. Struct.
Biol. 1996, 3 (2), 163-169.
48
Org. Lett., Vol. 5, No. 1, 2003