COMMUNICATIONS
nucleotide 3. This new chemoenzymatic strategy should find
use in the synthesis of other iminocyclitol nucleotides. We
believe that compounds 1 3 should be useful as general
inhibitors of fucosyltransferases.
Cyanoethynylethenes: A Class of
Powerful Electron Acceptors for
Molecular Scaffolding**
Nicolle N. P. Moonen, Corinne Boudon, Jean-
Paul Gisselbrecht, Paul Seiler, Maurice Gross, and
FranÁois Diederich*
Received: May 8, 2002 [Z19273]
[1] A. Varki, Glycobiology 1993, 3, 97.
[2] R. A. Dwek, Chem. Rev. 1996, 96, 683.
Tetraethynylethene (1, TEE, Scheme 1) was introduced in
1991 as a useful building block for the synthesis of one- and
two-dimensional p-conjugated scaffolds, such as poly(triacet-
ylene) oligomers, expanded radialenes, and dehydroannu-
lenes.[1] Incorporation of donor and acceptor substituents
resulted in interesting electronic[1e,2] and nonlinear optical
properties.[1e,3] Furthermore, the strain-free planarity allows
reversible, photochemical cis trans isomerization of cis- and
trans-arylated TEEs without competition from undesirable
thermal isomerization.[4]
[3] B. Winchester, G. W. J. Fleet, J. Carbohydr. Chem. 2000, 19, 471.
[4] J. B. Lowe, A. Varki, Essent. Glycobiol. 1999, 253.
[5] W. M. Watkins, Carbohydr. Res. 1986, 149, 1.
[6] R. Kleene, E. G. Berger, Biochim. Biophys. Acta 1993, 1154, 283.
[7] C. S. Rye, S. G. Withers, Curr. Opin. Chem. Biol. 2000, 4, 573.
[8] R. P. McEver, K. L. Moore, R. D. Cummings, J. Biol. Chem. 1995, 270,
11025.
[9] T. A. Springer, Nature 1990, 346, 425.
[10] J. Sakamoto, K. Furukawa, C. Cordon-Cardo, B. W. Yin, W. J. Rettig,
H. F. Oettgen, L. J. Old, K. O. Lloyd, Cancer Res. 1986, 46, 1553.
[11] T. Muramatsu, Glycobiology 1993, 3, 291.
[12] M. C. Field, L. J. Wainwright, Glycobiology 1995, 5, 463.
[13] M. M. Palcic, Methods Enzymol. 1994, 230, 300.
[14] M. L. Phillips, E. Nudelman, F. C. A. Gaeta, M. Perez, A. K. Singhal,
S. I. Hakomori, J. C. Paulson, Science 1990, 250, 1130.
[15] J. B. Lowe, L. M. Stoolman, R. P. Nair, R. D. Larsen, T. L. Berhend,
R. M. Marks, Cell 1990, 63, 475.
[16] B. W. Murray, V. Wittmann, M. D. Burkart, S.-C. Hung, C.-H. Wong,
Biochemistry 1997, 36, 823.
[17] T. D. Heightman, A. T. Vasella, Angew. Chem. 1999, 111, 794; Angew.
Chem. Int. Ed. 1999, 38, 750.
N
N
N
N
N
1
5
2
6
3
7
4
N
N
N
N
N
N
N
[18] T. Flessner, C.-H. Wong, Tetrahedron Lett. 2000, 41, 7805.
[19] S. Takayama, R. Martin, J. Wu, K. Laslo, G. Siuzdak, C.-H. Wong, J.
Am. Chem. Soc. 1997, 119, 8146.
N
N
Scheme 1. Progression from tetraethynylethene (TEE, 1) to tetracyanoe-
thene (TCNE, 7).
[20] B. Winchester, G. W. J. Fleet, Glycobiology 1992, 2, 199.
[21] S. Takayama, S. J. Chung, Y. Igarashi, Y. Ichikawa, A. Sepp, R. I.
Lechler, J. Wu, T. Hayashi, G. Siuzdak, C.-H. Wong, Bioorg. Med.
Chem. 1999, 7, 401.
Cyanoethynylethenes (2 6, CEEs) are an interesting class
of hybrid derivatives combining the scaffolding power of TEE
with the electronic properties of tetracyanoethene (7, TCNE),
which is one of the strongest organic electron acceptors
known, and has been widely used in the formation of charge-
transfer complexes.[5] So far, only derivatives of 3, with SiMe3
(8b, Scheme 2) or phenyl substituents,[6] and arylated deriv-
atives of 6[7] have been reported. Hopf and Kreutzer
demonstrated that there was an enhanced reactivity of the
triple bonds in derivatives of 3 and 6 towards Diels Alder
reactions[6] and in the [2þ2] cycloaddition to tetrathiafulva-
lene, with subsequent ring opening.[8] A similar reaction was
also observed by Hirsch and co-workers at the terminal
acetylene moiety of a,w-dicyanopolyynes.[9]
[22] Y. F. Wang, D. P. Dumas, C. H. Wong, Tetrahedron Lett. 1993, 34, 403.
[23] M. Mori, Y. Ito, T. Ogawa, Carbohydr. Res. 1989, 192, 131.
[24] T. Fukuyama, A. A. Laird, L. M. Hotchkiss, Tetrahedron Lett. 1985,
26, 6291.
[25] M. Petitou, P. Duchaussoy, J. Choay, Tetrahedron Lett. 1988, 29, 1389.
[26] J. D. Albright, L. Goldman, J. Am. Chem. Soc. 1965, 87, 4214.
[27] S. L. Huang, K. Omura, D. Swern, Synthesis 1978, 297.
[28] P. A. Grieco, C. S. Pogonowski, Synthesis 1973, 425.
[29] A. L. Gemal, J. L. Luche, J. Am. Chem. Soc. 1981, 103, 5454.
[30] K. L. Yu, B. Fraser-Reid, Tetrahedron Lett. 1988, 29, 979.
[31] E. A. Kitas, R. Knorr, A. Trzeciak, W. Bannwarth, Helv. Chim. Acta
1991, 74, 1314.
[32] V. Wittmann, C.-H. Wong, J. Org. Chem. 1997, 62, 2144.
[33] a) M. I. Lim, V. E. Marquez, Terahedron Lett. 1983, 24, 5559; b) S.
Mirza, L.P. Molleyres, A. Vasella, Helv. Chim. Acta 1985, 68, 988.
[34] L. Qiao, B. W. Murray, M. Shimazaki, J. Schultz, C.-H. Wong, J. Am.
Chem. Soc. 1996, 118, 7653.
[35] R. L. Pederson, K. K. C. Liu, J. F. Rutan, L. Chen, C. H. Wong, J. Org.
Chem. 1990, 55, 4897.
[36] S.-H. Jung, J.-H. Jeong, P. Miller, C.-H. Wong, J. Org. Chem. 1994, 59,
7182.
[37] a) B. W. Murray, V. Wittmann, M. D. Burkart, S.-C. Hung, C.-H.
Wong, Biochemistry 1997, 36, 823; b) M. D. Burkart, S. P. Vincent, A.
Duffels, B. W. Murray, S. V. Ley, C. H. Wong, Bioorg. Med. Chem.
2000, 8, 1937.
[38] S. Cai, M. R. Stroud, S. Hakomori, T. Toyokuni, J. Org. Chem. 1992, 57,
6693.
We have now extended the family of CEEs and report
herein the synthesis of 9 11a (Scheme 2), silylated derivatives
[*] Prof. Dr. F. Diederich, N. N. P. Moonen, P. Seiler
Laboratorium f¸r Organische Chemie
ETH-Hˆnggerberg, HCI, 8093 Z¸rich (Switzerland)
Fax : (þ 41)1-632-1109
E-mail: diederich@org.chem.ethz.ch
Dr. C. Boudon, Dr. J.-P. Gisselbrecht, Prof. Dr. M. Gross
Laboratoire d’Electrochimie et de Chimie Physique du Corps Solide
UMR 7512, C.N.R.S.
[39] J. I. Luengo, J. G. Gleason, Tetrahedron Lett. 1992, 33, 6911.
[40] M. Schuster, S. Blechert, Bioorg. Med. Chem. Lett. 2001, 11, 1809.
Universitÿ Louis Pasteur
4, rue Blaise Pascal, 67000 Strasbourg (France)
[**] We thank the ETH Research Council and the Fonds der Chemischen
Industrie for their support of this work. Robin Gist is acknowledged
for the supply of starting materials.
3044
¹ 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0044-8249/02/4116-3044 $ 20.00+.50/0
Angew. Chem. Int. Ed. 2002, 41, No. 16