Denmark and Fan
extensively developed.7-9 In the early studies by Ugi and
co-workers, excellent diastereoselectivities have been
accomplished in the addition of isocyanides to chiral
imines with ferrocenyl auxiliaries. More recently, Kunz
and co-workers have demonstrated that chiral scaffolds
derived from carbohydrates induce high selectivities in
the Lewis acid mediated Ugi reaction.8 On the other
hand, the use of R-methylbenzylamine auxiliary proved
to be ineffective for asymmetric induction.9 With regard
to the use of chiral isocyanide, only one successful
example has been reported by Ugi and co-workers for the
addition reaction with aldehydes.10 Despite the fact that
high diastereoselectivities can be achieved by the use of
certain chiral auxiliaries, all of these methods suffer from
the fact that chiral auxiliaries have to be stoichiomet-
rically incorporated and then removed from the product.
In view of the similarity of these reactions to cyanohydrin
additions and Strecker reactions11 it is surprising that
prior to our initial communication, there were no ex-
amples of catalytic enantioselective process. Subse-
quently, two reports have appeared; one that employs
chiral Bronsted catalysis with modest enantioselectivity
and a second that employs a copper bisoxazoline complex
and gives generally higher selectivities with a broader
range of substrates.12
SCHEME 1
addition of isocyanide and often generates multiple
addition product ii.13c,14c Furthermore, even if the adduct
iii could be generated, the dissociation of the MXn1 unit
from this intermediate would be required for the turnover
of Lewis acid catalyst, which has rarely seen success.14
We recognized that these problems could be addressed
by application of the newly introduced concept of Lewis
base activation of Lewis acids.15 This concept has been
successfully demonstrated in the context of various
enantioselective carbon-carbon bond-forming reactions.16
Chiral binaphthyldiamine-derived bisphosphoramide
(R,R)-1b effectively activates a weak Lewis acid, SiCl4,
and generates a highly reactive and selective silyl cation
for the asymmetric additions of allylstannanes, trialkyl-
silyl ketene acetals and silyl enol ethers to aldehydes
(Scheme 2).15 An important feature of these reactions is
Background
The formal divalency of the isocyanide nucleophile
provides a challenge to the successful development of
chiral Lewis acid catalysis in the R-addition reactions.
The primary adduct of the R-addition is a zwitterionic
nitrilium ion i, Scheme 1. In the classical Passerini and
Ugi reactions, a carboxylate combines with i and leads
to productive reaction pathways. However, for the Lewis-
acid-mediated R-addition, without a facile transfer of the
counterion X, this intermediate is subject to further
SCHEME 2
(6) Cuny, G.; Ga´mez-Montan˜o, R.; Zhu, J. Tetrahedron 2004, 60,
4879-4885.
(7) For additions to chiral imines with ferrocenyl auxiliaries, see:
(a) Ugi, I.; Offermann, K. Angew. Chem. 1963, 75, 917; Angew. Chem.,
Int. Ed. Engl. 1963, 2, 624. (b) Ugi, I.; Offermann, K.; Herlinger, H.
Angew. Chem. 1964, 76, 613; Angew. Chem., Int. Ed. Engl. 1964, 3,
656-657. (c) Urban, R.; Ugi, I. Angew. Chem., Int. Ed. Engl. 1975, 14,
61-62. (d) Eberle, G.; Ugi, I. Angew. Chem., Int. Ed. Engl. 1976, 15,
492-493. (e) Ugi, I.; Offermann, K.; Herlginer, H.; Marquarding, D.
Justus Liebigs Ann. Chem. 1967, 709, 1-10. (f) Demharter, A.; Ugi, I.
J. Prakt. Chem. 1993, 335, 244-245.
(8) For additions to chiral imines with carbohydrate auxiliaries,
see: (a) Oertel, K.; Zech, G.; Kunz, H. Angew. Chem. 2000, 112, 1489-
1491; Angew. Chem., Int. Ed. 2000, 39, 1431. (b) Kunz, H.; Pfrengle,
W. J. Am. Chem. Soc. 1988, 110, 651-652. (c) Kunz, H.; Pfrengle, W.
Tetrahedron 1988, 44, 5487-5494. (d) Kunz, H.; Pfrengle, W.; Sager,
W. Tetrahedron Lett. 1989, 30, 4109-4110. (e) Kunz, H.; Pfrengle, W.;
Ruck, K.; Sager, W. Synthesis 1991, 1039-1042. (f) Kunz, H.; Ruck,
K. Angew. Chem. 1993, 105, 355-377. (g) Goebel, M.; Ugi, I. Synthesis
1991, 1095-1098. (h) Lehnhoff, S.; Goebel, M.; Karl, R. M.; Klosel, R.;
Ugi, I. Angew. Chem. 1995, 107, 1208-1211; Angew. Chem., Int. Ed.
Engl. 1995, 34, 1104-1107. (i) Ross, G. F.; Herdtweck, E.; Ugi, I.
Tetrahedron 2002, 58, 6172-6133.
(13) For early examples of Lewis acid promoted R-addition reaction
of isocyanides, see: (a) Muller, E.; Zeeh, B. Liebigs Ann. Chem. 1966,
696, 72-80. (b) Muller, E.; Zeeh, B. Liebigs Ann. Chem. 1968, 715,
47-51. (c) Saegusa, T.; Taka-Ishi, N.; Fujii, H. Tetrahedron 1968, 24,
3795-3798. (d) Seebach, D.; Schiess, M. Helv. Chim. Acta 1983, 66,
1618-1623. (e) Seebach, D.; Adam, G.; Gees, T.; Schiess, M.; Weigand,
W. Chem. Ber. 1988, 121, 507-517. (f) Carofiglio, T.; Cozzi, P. G.;
Floriani, C.; Chiesa-Villa, A.; Rizzoli, C. Organometallics 1993, 12,
2726-2736.
(14) For recent examples of Lewis acid promoted R-addition reac-
tions of isocyanides, see the following. (a) Zn(OTf)2/TMSCl-promoted
Passerini-type reaction: Xia, Q.; Ganem, B. Org. Lett. 2002, 4, 1631-
1634. (b) LiOTf-promoted addition of isocyanides to epoxides and
aziridines: Kern, O. T.; Motherwell, W. B. Chem. Commun. 2003,
2988-2989. (c) GaCl3-mediated addition of isocyanides to epoxides:
Bez, G.; Zhao, C.-C. Org. Lett. 2003, 5, 4991-4993. (d) GaCl3-catalyzed
addition of isocyanides to enones: Chatani, N.; Oshita, M.; Tobisu,
M.; Ishii, Y.; Murai, Y. J. Am. Chem. Soc. 2003, 125, 7812-7813. (e)
Ti-TADDOL complex promoted Passerini reaction: Kusebauch, U.;
Beck, B.; Messer, K.; Herdtweck, E.; Do¨mling, A. Org. Lett. 2003, 5,
4021-4024.
(9) For additions to chiral imines with R-methylbenzylamine aux-
iliary, see: (a) Divanfard, H. R.; Lysenko, Z.; Wang, P. C.; Joullie, M.
M. Synth. Commun. 1978, 8, 269-273. (b) Semple, J. E.; Wang, P. C.;
Lysenko, Z.; Joullie, M. M. J. Am. Chem. Soc. 1980, 102, 7505-7510.
(10) For addition of a chiral isocyanide to aldehydes and imines,
see: Bock, H.; Ugi, I. J. Prakt. Chem. 1997, 339, 385-389.
(11) (a) Mori, A.; Inoue, S. In Comprehensive Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag:
Heidelberg, 1999; Vol. II; Chapter 28. (b) Groger, H. Chem. Rev. 2003,
103, 2795-2827.
(15) (a) Denmark, S. E.; Wynn, T. J. Am. Chem. Soc. 2001, 123,
6199-6200. (b) Denmark, S. E.; Wynn, T.; Beutner, G. L. J. Am. Chem.
Soc. 2002, 124, 13405-13407. (c) Denmark, S. E.; Beutner, G. L. J.
Am. Chem. Soc. 2003, 125, 7800-7801. (d) Denmark, S. E.; Heemstra,
J. R., Jr. Org. Lett. 2003, 5, 2303-2306.
(12) (a) Frey, R.; Galbraith, S. G.; Guelfi, S.; Lamberth, C.; Zeller,
M. Synlett 2003, 1536-1538. (b) Andreana, P.; Liu, C. C.; Schreiber,
S. L. Org. Lett. 2004, 5, 4231-4233.
9668 J. Org. Chem., Vol. 70, No. 24, 2005