Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC10288C
COMMUNICATION
Journal Name
7492; (e) R. Bossio, S. Marcaccini, R. Pepino, Liebigs Ann. 19 N. Chéron, R. Ramozzi, L. El Kaim, L. Grimaud, P. Fleurat-
Chem., 1993, 1229-1231.
Lessard, J. Org. Chem., 2012, 77, 1361-1366.
6
7
(a) I. Ugi, C. Steinbrückner, Chem. Ber., 1961, 94, 734-742.
For some more recent uses see: (b) T. Nixey, M. Kelly, C.
Hulme, Tetrahedron Lett., 2000, 41, 8729-8733; (c) C. F.
Marcos, S. Marcaccini, G. Menchi, R. Pepino, T. Torroba,
Tetrahedron Lett., 2008, 49, 149-152.
(a) L. El Kaim, L. Grimaud, J. Oble, Angew. Chem. Int. Ed.,
2005, 44, 7961-7964; (b) L. El Kaim, M. Gizolme, L. Grimaud,
J. Oble, J. Org. Chem. 2007, 72, 4169-4180; For reviews on
Ugi-Smiles reactions see: (c) L. El Kaïm, L. Grimaud, Mol. Div.
2010, 14, 855-867; (d) L. El Kaïm, L. Grimaud, Eur. J. Org.
Chem. 2014, 7749-7762.
K. Aknin, M. Gauriot, J. Totobenazara, N. Deguine, R. Deprez-
Poulain, B. Deprez, J. Charton, Tetrahedron Lett., 2012, 53, 22 (a) H. J. Shine, J. Zygmunt, M. L. Brownawell, J. S. Filippo, J.
458–461.
A. Massoudi, I. Amini, A. Ramazani, F. Z. Nasrabadi, Y.
Ahmadi, Bull. Korean Chem. Soc., 2012, 33, 39-42.
20 The use of N-hydroxysuccinimides in Passerini reaction was
recently published, though the reaction does not lead to N-N
bond formation, its mechanism might involve a related N-O
fragmentation: A. L. Chandgude, A. Domling, Org. Lett., 2016,
18, 6396-6399.
21 (a) E. F. Witucki, E. R. Wilson, J. E. Flanagan, M. B. Frankel, J.
Chem. Eng. Data, 1983, 28, 285-286; (b) T. Brill, Y. Oyumi, J.
Phys. Chem., 1986, 90, 6848-6853; (c) J. Song, Z. Zhou, X.
Dong, H. Huang, D. Cao, L. Liang, K. Wang, J. Zhang, F. Chen,
Y. Wu, J. Mater. Chem., 2012, 22, 3201-3209; (d) J. Zhang, C.
He, D. A. Parrish, J. M. Shreeve, Chem. Eur. J., 2013, 19
8929-8936.
,
8
9
Am. Chem. Soc., 1984, 106, 3610-3613; (b) O. Gorchs, M.
Hernandez, L. Garriga, E. Pedroso, A. Grandas, J. Farras, Org.
Lett., 2002, 4, 1827-1830.
10 I. W. McFarland, J. Org. Chem. 1963, 28, 2179-2181.
11 (a) I. Hagedorn, U. Eholzer, Chem. Ber., 1965, 98, 936-940;
(b) S. Konig, S. Lohberger,I. Ugi, Synthesis, 1993, 1233-1234;
(c) B. Zeeh Tetrahedron, 1968, 24, 6663- 6669.
12 (a) For use of stoichiometric amount of HCl see 7a; (b) For
use of sulfonic acid and enamines see: C. Masdeu, J. L. Diaz,
23 (a) P. d. Armos, C. G. Francisco, R. Hernandez, E. Suarez,
Tetrahedron Lett., 1986, 27, 3195-3198; (b) X. Pan, Z. Liu,
Tetrahedron, 2014, 70, 4602-4610.
24 (a) B. Cross, R. Hill, W. H. Gastrock, Phenylnitramine
herbicides, US Pat., US 3844762, 1974; (b) B. Cross, D.H.
Dawe,
phenylnitramines, US Pat., US 4130645, 1978; (c) Y. Wang, Z.
Fungicidal
phenylnitramines
and
new
M. Miguel, O. Jimenez, R. Lavilla, Tetrahedron Lett., 2004, 45
7907-7909.
,
Bai, Z. Wei, S. Xu, X. Li, J. Li, Res. Chem. Intermed., 2011, 37,
1029-1039.
13 CAUTION: Though no explosion has been reported with
ammonium nitrate prepared from primary amines, great
care should be taken with small amines with one to three
carbons due to the known sensibility of ammonium nitrate
(NH4NO3)
14 All the ammonium nitrates displayed in this study were
prepared through dropwise addition of HNO3 70% (1 equiv)
to a solution of the amine (1 equiv) in the toluene (1 M). The
reactions were stirred at room temperature for 30 minutes.
The precipitates were filtrated off, washed with Et2O, and
used without further purifications. When no precipitate is
formed, the crude ammonium nitrate can be dried by
azeotropic removal of water with toluene, followed by
evaporation of solvent under reduced pressure.
15 H. E. Ungnade, L. W. Kissinger, J. Org. Chem. 1965, 30, 354-
359.
16 Typical procedure given for 3a: The ammonium nitrate salt
5a (204 mg, 1.0 mmol, 1 equiv) was added in MeOH (0.3 M),
followed by the addition of isovaleraldehyde (107 µL, 1.0
mmol, 1.0 equiv), and cyclohexylisocyanide (124 µL, 1.0
mmol, 1.0 equiv). The reaction was stirred at room
temperature under argon overnight. After evaporation of the
solvent, purification by column chromatography (eluents:
PE/EtOAc 9:1, 8:2) to afford 3a as amorphous solid (342 mg,
yield 89%). 1H NMR (400 MHz, CDCl3) δ (ppm) 7.32 – 7.26 (m,
4H), 6.18 (d, J = 8.0 Hz, 1H), 5.21 (t, J = 7.5 Hz, 1H), 5.05 (d, J
= 16.1 Hz, 1H), 4.88 (d, J = 16.1 Hz, 1H), 3.73 – 3.68 (m, 1H),
1.92 – 1.85 (m, 2H), 1.71 – 1.58 (m, 5H), 1.56 – 1.48 (m, 1H),
1.39 – 1.27 (m, 2H), 1.21 – 1.06 (m, 3H), 0.96 (d, J = 6.6 Hz,
3H), 0.90 (d, J = 6.6 Hz, 3H).13C NMR (100 MHz, CDCl3) δ
(ppm) 166.7, 134.0, 133.7, 129.2, 128.8, 61.8, 51.3, 48.8,
38.1, 32.7, 32.6, 25.4, 25.0, 24.7, 22.4, 22.3. IR (thin film)
3418, 3058, 2858, 1682, 1516, 1371, 1289, 899νmax/cm-1.
HRMS m/z: [M]+●calcd for C19H28ClN3O3: 381.1819; calcd for
[M-NO2]+●: 335.189016 Found: 335.1880 [M-NO2]+●.
17 The crystallographic data for compounds 3l can be obtained
free of charge under the reference CCDC 1524126 from the
Cambridge
Crystallographic
Data
Centre
at
18 G. B. Giovenzana, G. C. Tron, S. D. Paola, I. G. Menegotto, T.
Pirali, Ang. Chem. Int. Ed. 2006, 45, 1099-1102.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins