Organic Letters
Letter
(6) Albini, A.; Arnold, D. Can. J. Chem. 1978, 56, 2985.
(7) Wong, J. P. K.; Fahmi, A. A.; Griffin, G. W.; Bhacca, N. S.
Tetrahedron 1981, 37, 3345−3355.
(8) (a) Lee, G. A. J. Org. Chem. 1978, 43, 4256−4258. (b) Pan, J.;
Zhang, W.; Zhang, J.; Lu, S. Tetrahedron Lett. 2007, 48, 2781.
(9) Clawson, P.; Lunn, P. M.; Whiting, D. A. J. Chem. Soc., Perkin
Trans. 1 1990, 153−157.
(10) Futamura, S.; Kusunose, S.; Ohta, H.; Kamiya, Y. J. Chem. Soc.,
Chem. Commun. 1982, 1223−1224.
(11) (a) Kottisch, V.; Michaudel, Q.; Fors, B. P. J. Am. Chem. Soc.
2016, 138, 15535−15538. (b) Perkowski, A. J.; You, W.; Nicewicz, D.
A. J. Am. Chem. Soc. 2015, 137, 7580−7583. (c) Xuan, J.; Xia, X. D.;
Zeng, T. T.; Feng, Z. J.; Chen, J. R.; Lu, L. Q.; Xiao, W. J. Angew.
Chem., Int. Ed. 2014, 53, 5653−5656. (d) Hu, X.; Zhang, G.; Bu, F.;
Lei, A. ACS Catal. 2017, 7, 1432−1437. (e) Huo, H.; Harms, K.;
Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936−6939. (f) Perkowski,
A. J.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135, 10334−10337.
Perkowski, A. J.; Cruz, C. L.; Nicewicz, D. A. J. Am. Chem. Soc. 2015,
137, 15684−15687.
(12) (a) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko,
N. V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600−1601.
(b) Lin, Y. C.; Chen, C. T. Org. Lett. 2009, 11, 4858−4861.
(13) Wilger, D. J.; Grandjean, J. M.; Lammert, T. R.; Nicewicz, D. A.
Nat. Chem. 2014, 6, 720−726.
be considered when targeting a particular product. When
dihydrofuran 1 was irradiated with 5 mol % of MD(p-tolyl)PT,
major decomposition was observed, providing evidence that the
products can be redox active.20
In summary, we have significantly expanded the scope of the
formation of carbonyl ylides from epoxides. Overcoming
current limitations led to the development of powerful organo
photoredox catalysts that are robust and possess some of the
highest oxidation potentials reported. These pyrylium catalysts
could find immediate application in already established
methods where more common catalysts such as Mes-Acr-Me
failed to produce a single electron transfer.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures for synthesis of substrates and
catalysts and for photoredox reactions; full character-
ization data and NMR spectra for all new compounds
(14) (a) Miranda, M. A.; Garcia, H. Chem. Rev. 1994, 94, 1063−
1089. (b) Martiny, M.; Steckhan, E.; Esch, T. Chem. Ber. 1993, 126,
1671−1682.
(15) Currently, we do not have sufficient data to assign this
transition. We speculate it may be a charge transfer state due to the
similarities to Fukuzumi’s catalyst.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(17) Other organic photoredox catalysts that possess higher
oxidation potentials absorb UV light. See ref 2 for a thorough inquiry.
(18) It is possible that the triplet excited state redox potential of
MDPT and MD(p-tolyl)PT, which would have a longer lifetime, could
be oxidizing enough to generate the desired carbonyl ylides.
(19) The epoxide and DMAD could be detected in the crude
material after the 48 h irradiation period.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(20) 1H NMR analysis of the crude material showed peaks
corresponding to DMAD and byproduct 10.
Financial support from Boston University and National Science
Foundation (ABB CHE-1555300) is gratefully acknowledged.
We thank Professor Scott Schaus for insightful discussions and
Dr. Norman Lee (Boston University) for high-resolution mass
spectrometry data. NMR (CHE-0619339) and MS (CHE-
0443618) facilities at Boston University are supported by the
NSF.
REFERENCES
■
(1) (a) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
(b) Bach, T. Angew. Chem., Int. Ed. 2015, 54, 11294−11295.
(2) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075−
10166.
(3) (a) Zhang, Y.; Petersen, J. L.; Milsmann, C. J. Am. Chem. Soc.
2016, 138, 13115−13118. (b) Rybicka-Jasinska, K.; Shan, W.; Zawada,
́
K.; Kadish, K. M.; Gryko, D. J. Am. Chem. Soc. 2016, 138, 15451−
15458. (c) Yin, H.; Jin, Y.; Hertzog, J. E.; Mullane, K. C.; Carroll, P. J.;
Manor, B. C.; Anna, J. M.; Schelter, E. J. J. Am. Chem. Soc. 2016, 138,
16266−16273. (d) Li, H.; Zhang, M. T. Angew. Chem., Int. Ed. 2016,
55, 13132−13136. (e) Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873−877.
(4) (a) Fraga, B. M.; Diaz, C. E.; Guadano, A.; Gonzalez-Coloma, A.
J. J. Agric. Food Chem. 2005, 53, 5200−5206. (b) Esumi, T.; Hojyo, D.;
Zhai, H.; Fukuyama, Y. Tetrahedron Lett. 2006, 47, 3979−3983.
(c) Liao, H. B.; Huang, G. H.; Yu, M. H.; Lei, C.; Hou, A. J. J. Org.
Chem. 2017, 82, 1632.
(5) (a) Hojo, M.; Ohkuma, M.; Ishibashi, N.; Hosomi, A.
Tetrahedron Lett. 1993, 34, 5943−5946. (b) Hojo, M.; Aihara, H.;
Ito, H.; Hosomi, A. Tetrahedron Lett. 1996, 37, 9241−9244.
(c) Karnischky, L. A.; Arnold, D. R. J. Am. Chem. Soc. 1970, 92,
1404−1406. (d) Padwa, A. Acc. Chem. Res. 1991, 24, 22−28. (e) .
D
Org. Lett. XXXX, XXX, XXX−XXX