ChemComm
Communication
benzene derivatives like 3t and the details of reaction mechanism
are ongoing in our laboratory.
Financial support was received from the 973 Program
(2012CB215306), NSFC (21325208, 21572212, 21361140372,
21472181), IPDFHCPST (2014FXCX006), CAS (KFJ-EW-STS-051,
YIPA-2015371), FANEDD (201424), FRFCU and PCSIRT.
Scheme 2 Pd(OAc)2-catalyzed direct triflation of benzoyl amide.
Notes and references
1 (a) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu and Y. Zhang, Org. Chem.
Front., 2015, 2, 1107–1295; (b) L. Xue and Z. Lin, Chem. Soc. Rev., 2010, 39,
(Path B). Thereafter, C–OTf reductive elimination of 8 occurs
to deliver the product 3r and regenerates the active catalyst (Fig. 2).
Preliminary DFT studies were conducted17 to provide insight
into the C–OTf and C–F reductive elimination from intermediates
5 and 6 (Fig. 2). To simplify the description of these mechanisms,
4 was considered as the reference point. 5 could generate the
fluorinated product via TS1 (Path A1, DGa = 9.3 kcal molÀ1) or
the triflated product via TS2 (Path A2, DGa = 18.8 kcal molÀ1).
´
1692–1705; (c) L. Estevez, L. W. Tuxworth, J.-M. Sotiropoulos, P. W. Dyer
and K. Miqueu, Dalton Trans., 2014, 43, 11165–11179.
2 (a) T. Watanabe, S. Ueda, S. Inuki, S. Oishi, N. Fujii and H. Ohno,
Chem. Commun., 2007, 4516–4518; (b) C. Cheng and J. F. Hartwig,
Chem. Rev., 2015, 115, 8946–8975; (c) A. H. Cherney, N. T. Kadunce
and S. E. Reisman, Chem. Rev., 2015, 115, 9587–9652; (d) G. Song,
F. Wang and X. Li, Chem. Soc. Rev., 2012, 41, 3651–3678; (e) M.-N.
Birkholz, Z. Freixa and P. W. N. M. van Leeuwen, Chem. Soc. Rev.,
2009, 38, 1099–1118; ( f ) I. P. Beletskaya and V. P. Ananikov, Chem.
Rev., 2011, 111, 1596–1636; (g) I. A. I. Mkhalid, J. H. Barnard,
T. B. Marder, J. M. Murphy and J. F. Hartwig, Chem. Rev., 2010,
110, 890–931; (h) A. Thakur, K. Zhang and J. Louie, Chem. Commun.,
2012, 48, 203–205; (i) S. Ando, H. Matsunaga and T. Ishizuka, J. Org.
Chem., 2015, 80, 9671–9681; ( j) A. B. Durr, G. Yin, I. Kalvet,
F. Napoly and F. Shoenebeck, Chem. Sci., 2016, 7, 1076–1081.
3 For recent examples of C–F forming reactions, see: (a) J. M. Racowski,
J. B. Gary and M. S. Sanford, Angew. Chem., Int. Ed., 2012, 51, 3414–3417;
(b) T. J. Maimone, P. J. Milner, T. Kinzel, Y. Zhang, M. K. Takase and
S. L. Buchwald, J. Am. Chem. Soc., 2011, 133, 18106–18109; (c) R.-Y. Zhu,
K. Tanaka, G.-C. Li, J. He, H.-Y. Fu, S.-H. Li and J.-Q. Yu, J. Am. Chem. Soc.,
2015, 137, 7067–7070; (d) H.-Y. Xiong, T. Besset, D. Cahard and
X. Pannecoucke, J. Org. Chem., 2015, 80, 4204–4212; (e) D. V. Yandolov
and N. T. Tran, J. Am. Chem. Soc., 2007, 129, 1342–1358; ( f ) D. A. Watson,
The former path is kinetically favored by 9.5 kcal molÀ1
,
indicating that C–F bond formation is more feasible via the
reductive elimination of 5. However, 5 could further form the
palladium triflate complex 6 by reacting with the excess HOTf
in the solution. This process is exergonic by 7.9 kcal molÀ1 due
to the formation of weak acid HF from HOTf. From 6, only
C–OTf reductive elimination is possible. It occurs via TS3 and is
more kinetically favored than TS1 by 1.9 kcal molÀ1 overall. The
calculation results indicate that the excessive amounts of HOTf
could act as a fluorine scavenger that removes FÀ from the Pd center
and inhibits the competitive C–F reductive elimination process.
We have successfully developed the first Pd-catalyzed C–H
activation/C–OTf bond-forming reaction. It provides a step-
economic way to obtain aryl triflates from naphthyl ketones
and naphthyl amides. The originally favored C–F reductive
elimination is suppressed by the excessively strong acid HOTf,
which removes the fluoride atom from the palladium intermediate
to form the key intermediate. We note that there are still some
deficiencies in the current catalytic system. Unreacted starting
materials exist in our reactions while the secondary amides and
the substrate bearing strong electron-withdrawing and electron-
donating groups are less active in our reactions. Further studies
focusing on resolving these deficiencies, applying this strategy to
´
M. Su, G. Teverovskiy, Y. Zhang, J. Garcıa-Fortanet, T. Kinzel and
S. L. Buchwald, Science, 2009, 325, 1661–1664; (g) N. D. Ball and
M. S. Sanford, J. Am. Chem. Soc., 2009, 131, 3796–3797; (h) C. Chen,
C. Wang, J. Zhang and Y. Zhao, J. Org. Chem., 2015, 80, 942–949.
4 X. Wang, T.-S. Mei and J.-Q. Yu, J. Am. Chem. Soc., 2009, 131,
7520–7521.
5 (a) E. J. Cho, T. D. Senecal, T. Kinzel, Y. Zhang, D. A. Watson and S. L.
Buchwald, Science, 2010, 328, 1679–1681; (b) Y. Ye, N. D. Ball, J. W. Kampf
and M. S. Sanford, J. Am. Chem. Soc., 2010, 132, 14682–14687;
(c) A. Maleckis and M. S. Sanford, Organometallics, 2014, 33, 2653–2660.
6 N. D. Ball, J. B. Gary, Y. Ye and M. S. Sanford, J. Am. Chem. Soc., 2011,
133, 7577–7584.
7 (a) T. Furuya, D. Benitez, E. Tkatchouk, A. E. Strom, P. Tang, W. A.
Goddard and T. Ritter, J. Am. Chem. Soc., 2010, 132, 3793–3807;
(b) T. Furuya and T. Ritter, J. Am. Chem. Soc., 2008, 130, 10060–10061.
8 H. G. Lee, P. J. Milner and S. L. Buchwald, J. Am. Chem. Soc., 2014,
136, 3792–3795.
9 K. M. Engle, T.-S. Mei, X. Wang and J.-Q. Yu, Angew. Chem., Int. Ed.,
2011, 50, 1478–1491.
´
10 N. M. Camasso, M. H. Perez-Temprano and M. S. Sanford, J. Am.
Chem. Soc., 2014, 136, 12771–12775.
11 Y. Xu, G. Yan, Z. Ren and G. Dong, Nat. Chem., 2015, 7, 829–835.
12 Some aryl sulfonate esters can be synthesized directly by oxidative-
substitution reactions of polycyclic aromatic hydrocarbons with
iodine(III) sulfonate reagent except for aryl-OTf, see: G. F. Koser,
S. Telua and K. K. Laalib, Tetrahedron Lett., 2006, 47, 7011–7015.
´
13 B. Alcaide, P. Almendros and C. Lazaro-Milla, Chem. Commun., 2015,
51, 6992–6995.
´
14 M. H. Perez-Temprano, J. M. Racowski, J. W. Kampf and M. S.
Sanford, J. Am. Chem. Soc., 2014, 136, 4097–4100.
15 B. Xiao, T.-J. Gong, J. Xu, Z.-J. Liu and L. Liu, J. Am. Chem. Soc., 2011,
133, 1466–1474.
16 B. Xiao, Y. Fu, J. Xu, T.-J. Gong, J.-J. Dai, J. Yi and L. Liu, J. Am. Chem.
Soc., 2010, 132, 468–469.
17 See the ESI† for more details.
18 We used trifluoroacetic acid, acetic acid and p-toluenesulfonic acid instead
of triflate, but no corresponding ester or triflated product were detected.
19 T. Diao, D. Pun and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 8205–8212.
Fig. 2 Energy profiles of Path A and Path B to generate the fluorination
product or triflation product. The relative free energies are given in kcal molÀ1
.
This journal is ©The Royal Society of Chemistry 2016
Chem. Commun.