H. R. Lawrence et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3756–3759
3759
8. Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong,
N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E. A. Science 2004, 303,
844.
9. Grasberger, B. L.; Lu, T.; Schubert, C.; Parks, D. J.; Carver, T. E.; Koblish, H. K.;
Cummings, M. D.; LaFrance, L. V.; Milkiewicz, K. L.; Calvo, R. R.; Maguire, D.;
Lattanze, J.; Franks, C. F.; Zhao, S.; Ramachandren, K.; Bylebyl, G. R.; Zhang, M.;
Manthey, C. L.; Petrella, E. C.; Pantoliano, M. W.; Deckman, I. C.; Spurlino, J. C.;
Maroney, A. C.; Tomczuk, B. E.; Molloy, C. J.; Bone, R. F. J. Med. Chem. 2005, 48,
909.
10. Shangary, S.; Qin, D.; McEachern, D.; Liu, M.; Miller, R. S.; Qiu, S.; Nikolovska-
Coleska, Z.; Ding, K.; Wang, G.; Chen, J.; Bernard, D.; Zhang, J.; Lu, Y.; Gu, Q.;
Shah, R. B.; Pienta, K. J.; Ling, X.; Kang, S.; Guo, M.; Sun, Y.; Yang, D.; Wang, S.
Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 3933.
11. Yin, H.; Lee, G. I.; Park, H. S.; Payne, G. A.; Rodriguez, J. M.; Sebti, S. M.;
Hamilton, A. D. Angew. Chem., Int. Ed. 2005, 44, 2704; Chen, L.; Yin, H.; Farooqi,
B.; Sebti, S.; Hamilton, A. D.; Chen, J. Mol. Cancer Ther. 2005, 4, 1019.
12. National Cancer Institute, Developmental Therapeutics Program. http://
13. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.;
Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.;
Shenkin, P. S. J. Med. Chem. 2004, 47, 1739.
14. Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W.
T.; Banks, J. L. J. Med. Chem. 2004, 47, 1750.
15. Brooks, W. H.; Daniel, K. G.; Sung, S.-S.; Guida, W. C. J. Chem. Inf. Model. 2008,
48, 639.
16. Böttger, A.; Böttger, V.; Garcia-Echeverria, C.; Chène, P.; Heinz-Kurt
Hochkeppel, H-K.; Sampson, W.; Ang, K.; Howard, S. F.; Picksley, S. M.; Lane,
D. P. J. Mol. Biol. 1997, 269, 744; Böttger, A.; Böttger, V.; Sparks, A.; Liu, W. L.;
Howard, S. F.; Lane, D. P. Curr. Biol. 1997, 7, 860.
333003 appears to be devoid of indiscriminate and unselective bio-
logical activity.
In summary, a new disruptor of the MDM2-p53 interaction has
been identified from the NCI Diversity Set by employing virtual
screening of the entire set followed by experimental testing of only
the top ranking compounds. From these 100 compounds, an active
species was identified, NSC 333003 (1, Fig. 1), which is amenable to
combinatorial library design. The 1H NMR spectrum of this com-
pound is consistent with a mixture of E/Z stereoisomers and an
X-ray structure of the pure Z-isomer was obtained from single
crystal diffraction of re-crystallized material. Although one might
be tempted to speculate that the slightly different IC50 values we
obtained for the solid material received from the NCI versus the
material we synthesized in-house (25 lM vs 13 lM) are due to dif-
ferent E/Z stereoisomer ratios, it is more likely that this discrep-
ancy is due to impurities in the sample obtained from the NCI.
This conclusion is consistent with our observation that the in-
house material that exhibited a 3:1 stereoisomeric ratio by NMR
afforded an IC50 essentially identical to the equilibrated material
that exhibited a 1:1 ratio of stereoisomers. Whereas the NCI mate-
rial, which exhibited a 1:1 ratio of stereoisomers by NMR, gave a
different IC50. This conclusion is also consistent with the nearly
identical docking scores we obtained for the E and Z stereoisomers
and nearly identical docking poses we observed (Figs. 2 and 4). In
any event, our ultimate goal is to replace the hydrazone moiety
with more drug-like scaffolds and, indeed, ones that cannot readily
isomerize. To that end, NSC 333003 can serve as a useful lead com-
pound for the structure-based design of more potent drug-like ana-
17. ELISA assay: The procedure in Ref. 16 was followed. Briefly, His6-p53 was
immobilized on 96-well ELISA plates. GST-MDM2 was then added in the
absence or presence of potential inhibitors. GST-MDM2 bound to p53 was
detected using MDM2 monoclonal antibody 5B10, followed by incubation with
protein A-HRP conjugate and a chromogenic substrate.
18. The AlphaScreenTM assay, which is available from Perkin Elmer, relies upon
donor and acceptor beads that are coated with hydrogel to provide functional
groups for bioconjugation. When two proteins interact (one of which is
conjugated to the donor bead and the other to the acceptor bead) the beads are
brought into close proximity. Excitation of a photosensitizer in the donor bead
results in the production of singlet oxygen that diffuses to and reacts with a
chemiluminescent molecule in the acceptor bead. This results in the activation
of fluorophores in the acceptor bead which results emitted light that can be
detected.
logs. Its potency (13 lM) is remarkable given that it has a relatively
low molecular weight (330.41) and yet is capable of inhibiting a
protein–protein interaction whose binding interface extends over
approximately 900 Å2.
19. AlphaScreenTM assay: GST-MDM2-1-150 and full-length His6-wt-p53 were
expressed in E. coli and affinity purified under non-denaturing conditions. To
detect the MDM2-p53 interaction by the AlphaScreenTM assay (Perkin Elmer),
GST-MDM2-1-150 (30 nM), His6-p53 (30 nM), and potential inhibitors were
Supplementary data
X-ray crystallographic data for 1 has been deposited with the
Cambridge Crystallographic Data Centre (Deposition number CCDC
726777).
mixed in a volume of 24
and incubated for 1 h at 24 °C. Nickel acceptor beads and glutathione donor
beads were added (0.5 g each) to reach a final volume of 30 l. Following 1 h
ll in binding buffer (PBS, 0.1% Tween 20, 10% glycerol)
l
l
incubation at 24 °C, the mixture was analyzed in a fluorometer at an excitation
wavelength of 680 nm. Nutlin-3a obtained from Cayman Chemical was used as
a control. The IC50 values reported are from runs repeated four times.
20. Pellerano, C.; Savini, L.; Massarelli, P. Farmaco. Ed. Sci. 1985, 40, 645.
Acknowledgments
We are grateful to the National Institutes of Health for supporting
this research through Grants P01CA118210 and P30 CA076292-10.
21. Synthesis of NSC 333003:
A
mixture of commercially available 2-
benzoylpyridine (0.50 g, 2.70 mmol) and 2-hydrazinobenzothiazole (0.49 g,
2.97 mmol) in methanol (20 ml) containing 5 drops of glacial acetic acid was
heated at 80 °C for 10–12 h. The reaction was followed by TLC (DCM/EtOAc 8:2
[Rf = 0.6] or EtOAc/hexane 3:7 [Rf = 0.3]) and TLC showed baseline impurities.
The crude reaction mixture was evaporated and purified (SiO2 flash
chromatography, neat DCM). The purified material was re-crystallized from
References and notes
1. Berg, T.; Cohen, B. S.; Desharnais, J.; Sonderegger, C.; Maslyar, J. D.; Goldberg, J.;
Boger, D. L.; Vogt, K. P. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 3830; Ho, Y.; Gruhler,
A.; Heilbut, A.; Bader, G. D.; Moore, L.; Adams, S. L.; Millar, A.; Taylor, P.;
Bennett, K.; Boutilier, K.; Yang, L. Y.; Wolting, C.; Donaldson, I.; Schandorff, S.;
Shewnarane, J.; Vo, M.; Taggart, J.; Goudreault, M.; Muskat, B.; Alfarano, C.;
Dewar, D.; Lin, Z.; Michalickova, K.; Willems, A. R.; Sassi, H.; Nielson, P. A.;
Rasmussen, K. J.; Anderson, J. R.; Johanson, L. E.; Hansen, L. H.; Jespersen, H.;
Podtelejnikov, A.; Nielson, E.; Crawford, J.; Poulsen, V.; Sorenson, B. D.;
Matthiesen, J.; Hendrickson, R. C.; Gleeson, F.; Pawson, T.; Moran, M. F.;
Durocher, D.; Mann, M.; Hogue, C. W. V.; Figeys, D.; Tyers, M. Nature 2002, 415,
180; Veselovsky, A. V.; Ivanov, Y. D.; Ivanov, A. S.; Archakov, A. I.; Lewi, P.;
Janssen, P. J. Mol. Recognit. 2002, 15, 405.
hot methanol and cooled to room temperature to obtain
a pale yellow
crystalline solid (0.33 g, 26%) as the required product. The X-ray crystal
structure of the single crystal analyzed from the in-house material is shown in
Figure 1b. Mp = 96–98 °C. The 1H NMR of the re-crystallized compound was
consistent with a 1:3 mixture of stereoisomers. 1H NMR (DMSO-d6, 400 MHz):
d 8.77 (br s, 1H), 8.44 (ddd, J = 4.8, 1.6, 0.8 Hz,1H), 8.14 (d, J = 8.0 Hz, 1H), 7.94
(br t, J = 7.6 Hz, 1H), 7.87 (dt, J = 8.0, 1.6 Hz, 1H), 7.70 (br s, 1H), 7.64 (d, 7.6 Hz,
1H), 7.50–7.49 (m, 4H), 7.43–7.21 (m, 10H), 7.28 (br t, 1H), 7.28–7.21 (m, 4H),
7.05 (br m, 3H); 13C NMR (DMSO-d6, 100 MHz): d 163.9, 162.2, 150.3, 148.2,
147.6, 146.9, 145.2, 144.5, 143.5, 138.1, 133.0, 132.5, 131.7, 126.8, 126.6, 126.5,
125.0, 124.2, 124.1, 123.9, 121.5, 121.3, 121.1, 119.1, 118.8, 117.7, 116.8,116.6,
115.4, 115.4; ES-MS m/z: 331 (100, MH+); ES-HRMS calcd for C19H15N4S (MH+)
331.1011, found 331.1013, calcd for C19H14N4SNa (M+Na+) 353.0831, found
353.0829.
2. Berg, T. Angew. Chem., Int. Ed. 2003, 42, 462.
3. Yin, H.; Hamilton, A. D. Angew. Chem., Int. Ed. 2005, 44, 4130.
4. Bohacek, R. S.; McMartin, C.; Guida, W. C. Med. Res. Rev. 1996, 16, 3.
5. Wells, J. A.; McClendon, C. L. Nature 2007, 450, 1001.
6. Vassilev, L. T. J. Med. Chem. 2005, 48, 4491.
7. Hu, B.; Gilkes, D. M.; Chen, J. Cancer Res. 2007, 67, 8810; Garcia-Echeverria, C.;
Chene, P.; Blommers, M. J. J.; Furet, P. J. Med. Chem. 2000, 43, 3205.
22. Kwon, S.; Tanaka, M.; Isagawa, K. Nippon Kagaku Kaishi 1973, 1314.
23. Betzi, S.; Restouin, A.; Opi, S.; Arold, S. T.; Parrot, I.; Guerlesquin, F.; Morelli, X.;
Collette, Y. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 19256.
24. Huryn, D. M.; Cosford, N. D. P. Ann. Rep. Med. Chem. 2007, 42, 401.