10.1002/anie.201916396
Angewandte Chemie International Edition
COMMUNICATION
Xu, X. Cheng, X. Cai, B. Liu, Angew. Chem. 2016, 128, 6567-6571;
Angew. Chem. Int. Ed. 2016, 55, 6457-6461.
Moreover, PSP encapsulation leads to a significantly higher f
of 0.35 exceeding the f values observed for this dye in ethanol,
ethanol−water mixtures, and in the solid state. This trend is also
reflected by a prolonged of 2.15 ns. The fluorescence features
of dyes 3d, 3j, 3s, and 3ag shown in the SI (see Figure S54 and
Table S8) reveal similar trends.
[6]
a) A. Shao, Y. Xie, S. Zhu, Z. Guo, S. Zhu, J. Guo, P. Shi, T. D. James,
H. Tian, W. H. Zhu, Angew. Chem. 2015, 127, 7383-7388; Angew.
Chem. Int. Ed. 2015, 54, 7275-7280; b) R. T. K. Kwok, C. W. T. Leung,
J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2015, 44, 4228-4238; c) K.
Li, B. Liu, Chem. Soc. Rev. 2014, 43, 6570-6597; d) N. Nirmalananthan,
T. Behnke, K. Hoffmann, D. Kage, C. F. Gers-Panther, W. Frank, T. J. J.
Müller, U. Resch-Genger, J. Phys. Chem C. 2018, 122, 11119-11127.
In summary, a library of 35 compounds of a new class of aroyl-
S,N-ketene acetals with tunable AIE characteristics could be
readily synthesized in good to excellent yields and the
spectroscopic properties of these dyes were studied in solution,
in the solid state and under conditions introducing dye
aggregation. These results revealed substitution pattern control
of the AIE effects. While the R1 substituent is essentially
responsible for the color of the chromophores, N-benzyl
substitution of the benzothiazolidene donor is most crucial for
the occurrence of AIE effects. These novel AIE chromophores
are well suited for implementation in optoelectronic devices.
Future work currently performed is directed to develop diversity
oriented one-pot syntheses for accessing -conjugation
extended aroyl-S,N-ketene acetals with tunable AIE
characteristics.
[7]
a) R. Furue, T. Nishimoto, I. S. Park, J. Lee, T. Yasuda, Angew. Chem.
2016, 128, 7287-7291; Angew. Chem. Int. Ed. 2016, 55, 7171-7175; b)
S. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang, C. Adachi, Angew. Chem.
2014, 126, 6520-6524; Angew. Chem. Int. Ed. 2014, 53, 6402-6406; c)
J. Huang, H. Nie, J. Zeng, Z. Zhuang, S. Gan, Y. Cai, J. Guo, S. J. Su,
Z. Zhao, B. Z. Tang, Angew. Chem. 2017, 129, 13151-13156; Angew.
Chem. Int. Ed. 2017, 56, 12971-12976.
[8]
[9]
M. Denißen, N. Nirmalanathan, T. Behnke, K. Hoffmann, U. Resch-
Genger, T. J. J. Müller, Mater. Chem. Front. 2017, 1, 2013-2026.
F. K. Merkt, T. J. J. Müller, Sci. China. Chem. 2018, 61, 909-924.
[10] T. J. J. Müller, in Aggregation Induced Emission: Materials and
Applications (Eds: M. Fujiki, B. Z. Tang, B. Liu), ACS Symposium
Series e-book, 2016, Chapter 6, pp. 85–112.
[11] F. K. Merkt, T. J. J. Müller, Isr. J. Chem. 2018, 58, 889-900.
[12] a) A. Mistr, V. Láznička, M. Vavra, Coll. Czech. Chem. Commun. 1971,
36, 150-163; b) M. Regitz, G. Weise, B. Lenz, U. Förster, K. Urgast, G.
Maas, Bull. Soc. Chim. Belges 1985, 94, 499-520.
Acknowledgements
[13] N. Zhao, J. W. Lam, H. H. Sung, H. M. Su, I. D. Williams, K. S. Wong, B.
Z. Tang, Chem. Eur. J. 2014, 20, 133-138.
Financial support by Deutsche Forschungsgemeinschaft (Mu
1088/9-1), and the Fonds der Chemischen Industrie is gratefully
acknowledged. The authors cordially thank M.Sc. Lars May
(Heinrich-Heine Universität Düsseldorf) for the support with DFT
calculations. M.Sc. Nithiya Nirmalananathan-Budau would like to
thank Christopher Kläber for technical assistance and
acknowledges financial support from the Bundesanstalt fꢀr
Materialforschung und -prꢀfung (BAM) within the framework of
the BAM funding programme “Menschen, Ideen” (MI, type III
project).
[14] R. Doenges, H. Ruckert, U. Geissler, H. Steppan, US4966828A,
Google Patents, 1990.
[15] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.
Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery,
Jr. , J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.
Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.
M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A.
D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J.
Fox, Gaussian, Inc., Wallingford CT, 2009.
Keywords: aggregation-induced emission • aroyl-S,N-ketene
acetals
• fluorescence • solid state emission • tuneable
photophysical properties
[1]
[2]
a) J. B. Birks, Organic molecular photophysics, 2nd edition, John Wiley
& Sons Ltd, Hoboken, 1975; b) W. Z. Yuan, P. Lu, S. Chen, J. W. Lam,
Z. Wang, Y. Liu, H. S. Kwok, Y. Ma, B. Z. Tang, Adv. mater. 2010, 22,
2159-2163; c) J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, B. Z. Tang,
Chem. Rev 2015, 115, 11718-11940.
[16] A. M. Brouwer, Pure Appl. Chem. 2011, 83, 2213-2228.
[17] a) T. Behnke, C. Würth, K. Hoffmann, M. Hübner, U. Panne, U. Resch-
Genger, J. Fluoresc. 2011, 21, 937-944; b) T. Behnke, C. Würth, E.-M.
Laux, K. Hoffmann, U. Resch-Genger, Dyes Pigments, 2012, 94, 247-
257.
a) J. Luo, Z. Xie, J. W. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X.
Zhan, Y. Liu, D. Zhu, Chem. commun. 2001, 18, 1740-1741; b) K.
Kokado, K. Sada, Angew. Chem. 2019, 131, 8724-8731; Angew. Chem.
Int. Ed. 2019, 58, 8632-8639.
[3]
[4]
J. Li, Y. Li, C. Y. Chan, R. T. Kwok, H. Li, P. Zrazhevskiy, X. Gao, J. Z.
Sun, A. Qin, B. Z. Tang, Angew. Chem. 2014, 126, 13736-13740;
Angew. Chem. Int. Ed. 2014, 53, 13518-13522.
a) M. Fujiki, B. Liu, B. Z. Tang, Aggregation-Induced Emission:
Materials and Applications Volume 2, ACS Publications, Washington,
2016; b) Y. Hong, J. W. Lam, B. Z. Tang, Chem. commun. 2009, 29,
4332-4353; c) M. Shimizu, Y. Takeda, M. Higashi, T. Hiyama, Angew.
Chem Int. Ed. 2009, 48, 3653-3656; d) A. Wakamiya, K. Mori. S.
Yamaguchi, Angew. Chem Int. Ed. 2007, 46, 4273-4276.
[5]
a) Q. Hu, M. Gao, G. Feng, B. Liu, Angew. Chem. 2014, 126, 14449-
14453; Angew. Chem. Int. Ed. 2014, 53, 14225-14229; b) Y. Yuan, S.
This article is protected by copyright. All rights reserved.