698
K. TSURUHAMI et al.
Ingredients J. (in Japanese), 208, 991–1003 (2003).
In conclusion, by screening for microorganisms
9) Sakata, K., ꢀ-Primeverosidase relationship with floral tea
aroma formation during processing of oolong tea and
black tea. In ‘‘Caffeinated Beverages,’’ American Chem-
ical Society, Washington, DC, pp. 327–336 (2000).
10) Sakata, K., Watanabe, N., and Usui, T., Molecular basis
of alcoholic aroma formation during tea processing. 3rd
International Conference on Food Science and Technol-
ogy, 93–105 (1999).
11) Ogawa, K., Moon, J. H., Guo, W., Yagi, A., Watanabe,
N., and Sakata, K., A study on tea aroma formation
mechanism: alcoholic aroma precursor amounts and
glycosidase activity in parts of the tea plant. Z.
Naturforsch., 50c, 493–498 (1995).
producing any ꢀ-Psd hydrolyzing enzymes, we found a
P. multicolor IAM7153 strain that produces a unique ꢀ-
primeverosidase-like enzyme that hydrolyzes ꢀ-Psd in
an endo-manner into primeverose and aglycon. The
enzyme showed much narrower substrate specificity
with respect to the aglycon moiety than tea ꢀ-primever-
osidase. We conclude that the present P. multicolor
enzyme is a kind of ꢀ-diglycosidase rather than ꢀ-
primeverosidase from tea leaves, because naturally
occurring aroma precursors such as benzyl, 2-phenyl-
ethyl, and geranyl ꢀ-Psds are hydrolyzed only slightly as
substrates for the enzyme.
12) Yamamoto, S., Okada, M., Usui, T., and Sakata, K.,
Isolation and characterization of a ꢀ-primeverosidase-
like endo-manner ꢀ-glycosidase from Aspergillus fumi-
gatus AP-20. Biosci. Biotechnol. Biochem., 66, 801–807
(2002).
13) Imaseki, H., and Yamamoto, T., A furcatin hydrolyzing
glycosidase of Viburnum furcatum blume. Arch. Bio-
chem. Biophys., 92, 467–474 (1961).
Acknowledgment
This work was supported by a research grant (Agri-
business) from the Ministry of Agriculture, Forestry, and
Fisheries of Japan.
14) Murata, T., Shimada, M., Watanabe, N., Sakata, K., and
Usui, T., Practical enzymatic synthesis of primeverose
and its glycoside. J. Appl. Glycosci., 46, 431–437 (1999).
15) Nanjo, F., Usui, T., and Suzuki, T., Mode of action of an
exo-ꢀ-(1!3)-D-glucanase on the laminaran from Eise-
nia bicyclis. Agric. Biol. Chem., 48, 1523–1532 (1984).
16) Inoue, K., Hiratake, J., Mizutani, M., Takada, M.,
Yamamoto, M., and Sakata, K., ꢀ-Glycosylamidine as
a ligand for affinity chromatography tailored to the
glycon substrate specificity of ꢀ-glycosidases. Carbohyd.
Res., 338, 1477–1490 (2003).
17) Hiratake, J., and Sakata, K., Glycosylamidines as potent
selective and easily accessible glycosidase inhibitors and
their application to affinity chromatography. Methods
Enzymol., 363, 421–443 (2003).
18) Svennerholm, L. J., The quantitative estimation of
cerebrosides in nervous tissue. J. Neurochem., 1, 42–53
(1956).
19) Lowry, O. H., Rosebrough, N. J., Farr, A. L., and
Randall, R. J., Protein measurement with the folin
phenol reagent. J. Biol. Chem., 193, 265–275 (1951).
20) Wong, A. W., He, S., Grubb, J. H., Sly, W. S., and
Withers, S. G., Identification of Glu-540 as the catalytic
nucleophile of human ꢀ-glucuronidase using electro-
spray mass spectrometry. J. Biol. Chem., 273, 34057–
34062 (1998).
21) Mizutani, M., Nakanishi, H., Ema, J. I., Ma, S. J.,
Noguchi, E., Inohara-Ochiai, M., Fukuchi-Mizutani, M.,
Nakao, M., and Sakata, K., Cloning of ꢀ-primeverosi-
dase from tea leaves, a key enzyme in tea aroma
formation. Plant Physiol., 130, 2164–2176 (2002).
22) Ahn, O. Y., Mizutani, M., Saino, H., and Sakata, K.,
Furcatin hydrolase from Viburnum furcatum blume is a
novel disaccharide-specific acuminosidase in glycosyl
hydrolase family 1. J. Biol. Chem., 279, 23405–23414
(2004).
References
1) Guo, W., Sakata, K., Watanabe, N., Nakajima, R., Yagi,
A., Ina, K., and Luo, S., Geranyl 6-O-ꢀ-xylopyranosyl-
ꢀ-D-glucopyranoside isolated as aroma precursor from
tea leaves for oolong tea. Phytochemistry, 33, 1373–
1375 (1993).
2) Guo, W., Hosoi, R., Sakata, K., Watanabe, N., Yagi, A.,
Ina, K., and Luo, S., (S)-Linalyl, 2-phenylethyl, and
benzyl disaccharide glycosides isolated as aroma pre-
cursors from oolong tea leaves. Biosci. Biotechnol.
Biochem., 58, 1532–1534 (1994).
3) Guo, W., Yamauchi, K., Watanabe, N., Usui, T., Luo, S.,
and Sakata, K., A primeverosidase as a main glycosidase
concerned with the alcoholic aroma formation in tea
leaves. Biosci. Biotechnol. Biochem., 59, 962–964 (1995).
4) Guo, W., Ogawa, K., Yamauchi, K., Watanabe, N., Usui,
T., Luo, S., and Sakata, K., Isolation and characterization
of a ꢀ-primeverosidase concerned with alcoholic aroma
formation in tea leaves. Biosci. Biotechnol. Biochem.,
60, 1810–1814 (1996).
5) Ogawa, K., Ijima, Y., Guo, W., Watanabe, N., Usui, T.,
Dong, S., Tong, Q., and Sakata, K., Purification of a ꢀ-
primeverosidase concerned with alcoholic aroma for-
mation in tea leaves (cv. Shuixian) to be precessed to
oolong tea. J. Agric. Food Chem., 45, 877–882 (1997).
6) Ijima, Y., Ogawa, K., Watanabe, N., Usui, T., Ohnishi-
Kameyama, M., Nagata, T., and Sakata, K., Character-
ization of ꢀ-primeverosidase, being concerned with
alcoholic aroma formation in tea leaves to be processed
into black tea, and preliminary observation on its
substrate specificity. J. Agric. Food Chem., 46, 1712–
1718 (1998).
7) Ma, S. J., Mizutani, M., Hiratake, J., Hayashi, K., Yagi,
K., Watanabe, N., and Sakata, K., Substrate specificity of
ꢀ-primeverosidase, a key enzyme in aroma formation
during oolong tea and black tea manufacturing. Biosci.
Biotechnol. Biochem., 65, 2719–2729 (2001).
8) Mizutani, M., and Sakata, K., ꢀ-Primeverosidase and its
contribution to formation of floral tea aromas during
oolong and black tea manufacturing. Foods Food
23) Tsuruhami, K., Mori, S., Sakata, K., Amarume, S.,
Saruwatari, S., Murata, T., and Usui, T., Efficient
synthesis of ꢀ-primeverosides as aroma precursors by
transglycosylation of ꢀ-diglycosidase from Penicillium
multicolor. J. Carbohydr. Chem., 24, 849–863 (2005).