Communication
reveal that the selectivity of alkyl radical addition is controlled
by the difference between the rates of ethyl radical addition vs.
iodine atom abstraction. Therefore, to selectively deliver an
alkyl group of choice, it is best if a B-alkylborane derivative,
such as a trialkylborane, is used as the alkyl radical source.
Keywords: C–H substitution · Alkylation · Oxidative
dearomatization · Radicals · Regioselectivity
[1] a) R. J. Phipps, M. J. Gaunt, Science 2009, 323, 1593–1597; b) H. A. Duong,
R. E. Gilligan, M. L. Cooke, R. J. Phipps, M. J. Gaunt, Angew. Chem. Int. Ed.
2011, 50, 463; Angew. Chem. 2011, 123, 483–466; c) O. Saidi, J. Marafie,
A. E. W. Ledger, P. M. Liu, M. F. Mahon, G. Kociok-Kohn, M. K. Whittlesey,
C. G. Frost, J. Am. Chem. Soc. 2011, 133, 19298–19301; d) D. Leow, G. Li,
T. S. Mei, J. Q. Yu, Nature 2012, 486, 518–522; e) N. Hofmann, L. Acker-
mann, J. Am. Chem. Soc. 2013, 135, 5877–5884; f) S. Lee, H. Lee, K. L.
Tan, J. Am. Chem. Soc. 2013, 135, 18778–18781; g) L. Wan, N. Dastbara-
vardeh, G. Li, J. Q. Yu, J. Am. Chem. Soc. 2013, 135, 18056–18059; h) M.
Bera, A. Modak, T. Patra, A. Maji, D. Maiti, Org. Lett. 2014, 16, 5760–5763;
i) R. Y. Tang, G. Li, J. Q. Yu, Nature 2014, 507, 215–220; j) G. Q. Yang, P.
Lindovska, D. J. Zhu, J. Kim, P. Wang, R. Y. Tang, M. Movassaghi, J. Q. Yu,
J. Am. Chem. Soc. 2014, 136, 10807–10813; k) L. Chu, M. Shang, K. Tanaka,
Q. H. Chen, N. Pissarnitski, E. Streckfuss, J. Q. Yu, ACS Cent. Sci. 2015, 1,
394–399; l) Y. Q. Deng, J. Q. Yu, Angew. Chem. Int. Ed. 2015, 54, 888;
Angew. Chem. 2015, 127, 902–891; m) M. Bera, A. Maji, S. K. Sahoo, D.
Maiti, Angew. Chem. Int. Ed. 2015, 54, 8515; Angew. Chem. 2015, 127,
8635–8519; n) T. Patra, R. Watile, S. Agasti, T. Naveen, D. Maiti, Chem.
Commun. 2016, 52, 2027–2030.
Conclusions
In summary, we have developed a mild, transition metal-free,
and directing-group-free strategy for C–H meta-alkylation of
catechol mono-ethers. This method utilizes a tandem oxidative
dearomatization – radical addition – rearomatization protocol
to form an otherwise challenging C(sp2)–C(sp3) bond. Alkyl
groups can be primary, secondary, or tertiary, and their source
is commonly a trialkylborane, though in rare cases, it can also
be an alkyl iodide in presence of triethylborane. The method is
regioselective and orthogonal to traditional electrophilic substi-
tution, and is compatible with various radical labile groups on
the parent arene, such as halides and olefins.
[2] a) R. B. Bedford, S. J. Coles, M. B. Hursthouse, M. E. Limmert, Angew.
Chem. Int. Ed. 2003, 42, 112; Angew. Chem. 2003, 115, 116–114; b) B.
Xiao, Y. Fu, J. Xu, T. J. Gong, J. J. Dai, J. Yi, L. Liu, J. Am. Chem. Soc. 2010,
132, 468–469; c) X. D. Zhao, C. S. Yeung, V. M. Dong, J. Am. Chem. Soc.
2010, 132, 5837–5844; d) K. Beydoun, H. Doucet, Catal. Sci. Technol.
2011, 1, 1243–1249; e) C. L. Ciana, R. J. Phipps, J. R. Brandt, F. M. Meyer,
M. J. Gaunt, Angew. Chem. Int. Ed. 2011, 50, 458; Angew. Chem. 2011,
123, 478–462; f) T. Dohi, T. Kamitanaka, S. Watanabe, Y. J. Hu, N. Washimi,
Y. Kita, Chem. Eur. J. 2012, 18, 13614–13618; g) T. Truong, O. Daugulis,
Chem. Sci. 2013, 4, 531–535; h) D. G. Yu, F. de Azambuja, F. Glorius,
Angew. Chem. Int. Ed. 2014, 53, 7710; Angew. Chem. 2014, 126, 7842–
7712.
Experimental Section
General Procedure for meta-Ethylation of Catechol Mono-Ethers
with Triethylborane: To a flame-dried 50 mL round-bottom flask
equipped with a stir bar, anhydrous potassium carbonate (414 mg,
3.0 mmol, 3.0 equiv) and lead(IV) acetate [95 %] (513 mg, 1.1 mmol,
1.1 equiv.) were added, the flask capped with a septum, cooled to
0 °C and purged with N2. DCM (8 mL) was syringed in, and the
slurry was vigorously stirred. To this slurry, a catechol mono-ether
derivative (1.0 mmol, 1.0 equiv) in DCM (2 mL) was syringed in over
30 sec and the reaction was vigorously stirred at 0 °C until TLC
showed complete consumption of the starting material (typically
less than 30 min). The ice bath was removed, and pinacol (30 mg,
0.25 mmol, 0.25 equiv) in DCM (0.5 mL) was syringed in to consume
left-over lead(IV) acetate and the reaction was stirred at room tem-
perature for 1 h. To remove the insoluble solids, the slurry was
then filtered through an alumina plug [1.0 × 1.0 cm] (Basic Alumina,
Activity III) into a flame dried 100 mL round-bottom flask equipped
with a stir bar, and the solids were thoroughly washed with DCM
(10 mL). The filtrate was then equipped with an air condenser, and
the flask cooled to –42 °C (dry ice/acetonitrile bath). Methanol
(1.0 mL) was added, and the reaction mixture was stirred at –42 °C
under open atmosphere (substrates 4k–4o were ran at room tem-
perature in absence of an air condenser and methanol). Triethylbo-
[3] J. H. P. Tyman, Synthetic and Natural Phenols; Elsevier, 1996.
[4] H. X. Dai, G. Li, X. G. Zhang, A. F. Stepan, J. Q. Yu, J. Am. Chem. Soc. 2013,
135, 7567–7571.
[5] J. F. Luo, S. Preciado, I. Larrosa, J. Am. Chem. Soc. 2014, 136, 4109–4112.
[6] J. C. Zhang, Q. W. Liu, X. F. Liu, S. Q. Zhang, P. P. Jiang, Y. X. Wang, S. Y.
Luo, Y. Li, Q. F. Wang, Chem. Commun. 2015, 51, 1297–1300.
[7] a) S. Quideau, L. Pouysegu, Org. Prep. Proced. Int. 1999, 31, 617–680; b)
D. Magdziak, S. J. Meek, T. R. R. Pettus, Chem. Rev. 2004, 104, 1383–1429;
c) S. Quideau, L. Pouysegu, A. Ozanne, J. Gagnepain, Molecules 2005, 10,
201–216; d) S. P. Roche, J. A. Porco, Angew. Chem. Int. Ed. 2011, 50, 4068;
Angew. Chem. 2011, 123, 4154–4093; e) Q. P. Ding, Y. Ye, R. H. Fan, Synthe-
sis 2013, 45, 1–16.
[8] E. Vitaku, J. T. Njardarson, Tetrahedron Lett. 2015, 56, 3550–3552.
[9] a) F. Wessely, J. Kotlan, Monatsh. Chem. 1953, 84, 291–297; b) D. Deffieux,
I. Fabre, A. Titz, J. M. Leger, S. Quideau, J. Org. Chem. 2004, 69, 8731–
8738.
rane [1.0
M in hexanes] (4.0 mL, 4.0 mmol, 4.0 equiv) was syringed
in and the reaction mixture was stirred at –42 °C to room tempera-
ture by allowing the cold bath to gradually warm to room tempera-
ture, and stirred overnight. Trifluoroacetic acid (0.8 mL, 10.0 mmol,
10.0 equiv) was syringed in to hydrolyze any remaining catechol
mono-ether derivative O–B bonds, and the reaction was stirred for
1 h, following which methanol (5.0 mL) was added and the reaction
mixture was concentrated in vacuo, and the remaining boron-con-
taining species were co-evaporated with methanol (3 × 5 mL) to
give the product as a residue, which was purified using acetic acid
pre-treated silica gel flash column chromatography.
[10] F. Wessely, F. Sinwel, Monatsh. Chem. 1950, 81, 1055–1070.
[11] a) S. Quideau, L. Pouysegu, M. A. Looney, J. Org. Chem. 1998, 63, 9597–
9600; b) S. Quideau, M. A. Looney, L. Pouysegu, S. Ham, D. M. Birney,
Tetrahedron Lett. 1999, 40, 615–618; c) S. Quideau, L. Pouysegu, M. Ox-
oby, M. A. Looney, Tetrahedron 2001, 57, 319–329.
[12] a) G. P. Shulman, Can. J. Chem. 1964, 42, 974–976; b) W. Schwarze, W.
Weigert, Google Patents, 1973.
[13] C. Ollivier, P. Renaud, Chem. Rev. 2001, 101, 3415–3434.
[14] a) A. Suzuki, N. Miyaura, M. Itoh, H. C. Brown, G. W. Holland, E. I. Negishi,
J. Am. Chem. Soc. 1971, 93, 2792–2793; b) L. W. Bieber, P. J. R. Neto, R. M.
Generino, Tetrahedron Lett. 1999, 40, 4473–4476.
[15] Addition of silica gel (ca. 2 g/mmol substrate) to the reaction mixture
also protonates the boron phenolate. This slurry is stirred for an hour,
then filtered and flushed with diethyl ether.
[16] a) S. K. Chittimalla, C. Bandi, S. Putturu, R. Kuppusamy, K. C. Boellaard,
D. C. A. Tan, D. M. J. Lum, Eur. J. Org. Chem. 2014, 2565–2575; b) S. K.
Chittimalla, R. Kuppusamy, C. Bandi, Synlett 2014, 25, 1991–1996; c) S. K.
Chittimalla, R. Kuppusamy, N. Akavaram, Synlett 2015, 26, 613–618.
Acknowledgments
Financial support for this work was provided by The University
of Arizona. The authors thank Dr. Neil E. Jacobsen for valuable
NMR discussions.
Eur. J. Org. Chem. 0000, 0–0
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim