N. Griesang, C. Richert / Tetrahedron Letters 43 (2002) 8755–8758
8757
vided by this methyl group are missing. Therefore it is
promising to pursue ethynyl substituents at position 2
of pyrimidine nucleobase analogs further. They may
also be useful for probing substrate–polymerase
complexes.21
(d) Seela, F.; Becher, G. Nucleic Acids Res. 2001, 29,
2069–2078; (e) Okamoto, A.; Tanaka, K.; Saito, I.
Bioorg. Med. Chem. Lett. 2002, 12, 97–99.
5. Lin, K.-Y.; Matteucci, M. D. J. Am. Chem. Soc. 1998,
120, 8531–8532.
6. (a) Wagner, R. W.; Matteucci, M. D.; Grant, D.; Huang,
T.; Froehler, B. C. Nature Biotechn. 1996, 14, 840–844;
(b) Barnes, T. W.; Turner, D. H. J. Am. Chem. Soc. 2001,
123, 4107–4118 and references cited therein.
Acknowledgements
7. Available from ABCR GmbH, D-76151 Karlsruhe,
Germany.
8. Heaney, H.; Millar, I. T. Org. Syn. Collective Vol. V,
1120–1123.
9. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron
Lett. 1975, 50, 4467–4470.
10. Model protocol for a related substrate: Van Meurs, P. J.;
Janssen, R. A. J. J. Org. Chem. 2000, 65, 5712–5719.
11. To a mixture of 1-bromo-4-fluoro-2-iodobenzene (2, 42.4
g, 0.141 mol), Pd(PPh3)2Cl2 (990 mg, 1.41 mmol), and
CuI (376 mg, 1.97 mmol) in NEt3 (300 mL) under Ar was
added trimethylsilylethyne (16.6 g, 23.9 mL, 0.169 mol)
within 1 h. After 2 h at r.t., half conc. aqueous NH4Cl
solution (400 mL) was added, the organic phase sepa-
rated and the aqueous phase extracted with CH2Cl2
(3×100 mL). Distillation from the combined organic
phases (0.1 Torr, 65°C) yielded 3 (36.45 g, 0.134 mol,
95%). 1H NMR (CDCl3, 250 MHz) l (ppm)=7.50 (dd,
J=5.19, 8.8 Hz, 1H), 7.19 (dd, J=3.0, 8.8 Hz, 1H), 6.89
(ddd, J=3.0, 7.9, 8.8 Hz, 1H), 0.28 (s, 9H); Anal. calc: C
48.72; H 4.46, found C 48.48; H 4.42.
This work was supported by Deutsche Forschungsge-
meinschaft, grants No. RI 1063/2-1 and FOR 434, and
Fonds der Chemischen Industrie. The authors wish to
thank Jan Rojas, Sukunath Narayanan, and Frank
Brotzel for help with DNA synthesis, UV melting curve
experiments, and the acquisition of MALDI-TOF mass
spectra.
References
1. Selected references: (a) Schweitzer, B. A.; Kool, E. T. J.
Org. Chem. 1994, 59, 7238–7242; (b) Schweitzer, B. A.;
Kool, E. T. J. Am. Chem. Soc. 1995, 117, 1863–1872; (c)
Ren, R. X.-F.; Chaudhuri, N. C.; Paris, P. L.; Rumney,
S.; Kool, E. T. J. Am. Chem. Soc. 1996, 118, 7671–7678;
(d) Guckian, K.; Schweitzer, B. A.; Ren, R. X.-F.; Sheils,
C. J.; Paris, P. L.; Tahmassebi, D. C.; Kool, E. T. J. Am.
Chem. Soc. 1996, 118, 8182–8183; (e) Moran, S.; Ren, R.
X.-F.; Rumney, S.; Kool, E. T. J. Am. Chem. Soc. 1997,
119, 2056–2057; (f) Morales, J. C.; Kool, E. T. Nature
Struc. Biol. 1998, 5, 950–954; (g) Matray, T. J.; Kool, E.
T. J. Am. Chem. Soc. 1998, 120, 6191–6192; (h) Morales,
J. C.; Kool, E. T. J. Am. Chem. Soc. 1999, 121, 2323–
2324; (i) Kool, E. T. Ann. Rev. Biophys. Biomol. Struct.
2001, 30, 1–22; (j) McMinn, D. L.; Ogawa, A. K.; Wu,
Y.; Liu, J.; Schultz, P. G.; Romesberg, F. E. J. Am.
Chem. Soc. 1999, 121, 11585–11586; (k) Ogawa, A. K.;
Wu, Y.; McMinn, D. L. Liu, J.; Schultz, P. G.; Romes-
berg, F. E. J. Am. Chem. Soc. 2000, 122, 3274–3287; (l)
Tae, E. J.; Wu, Y.; Xia, G.; Schultz, P. G.; Romesberg,
F. E. J. Am. Chem. Soc. 2001, 123, 7439–7440; (m)
Parsch, J.; Engels, J. W. Helv. Chim. Acta 2000, 83,
1791–1808; (n) Seela, F.; Bourgeois, W.; Rosemeyer, H.;
Wenzel, T. Helv. Chim. Acta 1996, 79, 488–498.
2. Selected references: (a) Moran, S.; Ren, R. X.-F.; Kool,
E.T. Proc. Natl. Acad. Sci. USA 1997, 94, 10506–10511;
(b) Guckian, K. M.; Krugh, T. R.; Kool, E. T. J. Am.
Chem. Soc. 2000, 122, 6841–6847; (c) Cubero, E.; Sherer,
E. C.; Luque, F. J.; Orozco, M.; Laughton, C. A. J. Am.
Chem. Soc. 1999, 121, 8653–8654.
3. For recent reviews, see e.g.: (a) Herdewijn, P. Antisense
Nucleic Acid Drug Dev. 2000, 10, 297–310; (b) Kool, E.
T.; Morales, J. C.; Guckian, K. M. Angew. Chem. Int.
Ed. Engl. 2000, 39, 990–1012, Angew. Chem. 2000, 112,
1046–1068.
12. Chaudhuri, N. C.; Kool, E. T. Tetrahedron Lett. 1995,
36, 1795–1798.
13. (a) Fox, J. J.; Yung, N. C.; Wempen, I.; Hoffer, M. J.
Am. Chem. Soc. 1961, 83, 4066–4068; (b) Hoffer, M.
Chem. Ber. 1969, 23, 2777–2779; (c) Wang, Z. X.; Duan,
W.; Wiebe, L. I.; Balzarini, J.; De Clerq, E.; Knaus, E. E.
Nucleosides Nucleotides Nucl. Acids 2001, 20, 11–40.
14. Bromide 3 (16.27 g, 60 mmol) and Mg (7.3 g, 300 mmol)
in THF (80 mL) were treated with 1,2-dibromoethane
(11.3 g, 60 mmol) in THF (20 mL) slowly enough to
maintain a mild reflux (1 h) (attention: ethene gas is
liberated). The solution was heated to reflux until GC-
MS showed disappearance of 3 (approx. 2 h). Solids were
filtered off under Ar after cooling, and the solution
treated with CdCl2 (5.5 g, 30 mmol) (attention: CdCl2 is
very toxic and carcinogenic), followed by heating to
reflux for 4 h. The mixture was cooled to 0°C and treated
with 4 (11.8 g, 27.6 mmol), followed by stirring for 16 h
while warming to approx. 10°C. The mixture was treated
with NH4Cl solution (100 mL) and water (100 mL). The
aqueous phases were extracted with CH2Cl2 (3×50 mL),
the combined organic phases dried over Na2SO4, and
evaporated. Flash chromatography (silica, toluene)
yielded a mixture of 5a and 5b (8.44 g, 14.4 mmol; 53%).
Rf (silica, CH2Cl2) 0.65; EI-MS (70 eV) 584, 428, 139,
111.
4. Selected references: (a) Groebke, K.; Hunziker, J.; Fraser,
W.; Peng, L.; Diederichsen, U.; Zimmermann, K.;
Holzner, A. Leumann, C.; Eschenmoser, A. Helv. Chim.
Acta 1998, 81, 375–474; (b) Fidanza, J. A.; McGall, G.
H. Nucleosides Nucleotides 1999, 18, 1293–1295; (c)
Nguyen, H.-K.; Fournier, O.; Asseline, U.; Dupret, D.;
Thuong, N. T. Nucleic Acids Res. 1999, 27, 1492–1498;
15. The epimers (5a/b) (560 mg, 0.956 mmol) in THF (5 mL)
were treated with TBAF solution (1 M in THF, 1.15 mL)
for 1 h. Sat. NH4Cl solution (15 mL) was added, fol-
lowed by extraction with CH2Cl2 (3×10 mL), washing
with brine, drying of the combined organic phases over
Na2SO4, evaporation, and flash chromatography (silica,
petroleum ether/ethyl acetate, 10:1) to yield 348 mg