compounds precipitate. cSI: hMAO-B selectivity index = IC50 (hMAO-A)/ IC50 (hMAO-B). # Values obtained under the assumption that
the corresponding IC50 against MAO-$ꢀLVꢀWKHꢀKLJKHVWꢀFRQFHQWUDWLRQꢀWHVWHGꢀꢂꢃꢄꢄꢀȝ0ꢅꢁ
All the new synthesized compounds (3a-k and 4a-u) and
reference inhibitors were tested towards hMAO isoforms. Results
reported in Table 1 show that most derivatives inhibited the
hMAO-B isoform with IC50 values in the low micromolar or
nanomolar range. Moreover, several compounds proved to be
able to inhibit hMAO-A with lower affinity. Therefore, the new
compounds are in general selective hMAO-B inhibitors.
both WKHꢀꢆ¶ꢀDQGꢀꢇ¶ꢀSRVLWLRQVꢀRIꢀWKH 3-phenyl ring, enhances both
hMAO-A and hMAO-B inhibition efficacies.
References and notes
1. Yamada, M.; Yasuhara, H.; Neurotoxicology 2004, 25, 215.
2. Riederer, P.; Youdim, M.B.H.; J. Neurochem. 1986, 46, 1359.
3. Fernandez, H.H.; Chen, J.J.; Pharmacotherapy 2007, 27, 174S.
4. Finberg, J.P.; Wang, J.; Bankiewich, K.; Harvey-White, J.;
Kopin, I.J.; Goldstein, D.S.; J. Neural Transm. Suppl. 1998, 52,
279.
5. Di Monte, D.A.; DeLanney, L.E.; Irwin, I.; Royland, J.E.; Chan,
P.; Jacowec, M.W.; Langston, J.W.; Brain Res. 1996, 738, 53.
6. LeWitt, P.A.; Taylor, D.C.; Neurotherapeutics 2008, 5(2) 210.
7. Gesi, M.; Santinami, A.; Ruffoli, R.; Conti, G.; Fornai, F.;
Pharmacol. Toxicol. 2001,89, 217.
8. Fornai, F.; Battaglia, G.; Gesi, M.; Giorgi, F.S.; Orzi, F.; Nicoletti,
F.; Brain Res. 2000, 887, 110.
9. Marchitti, S.A.; Deitrich, R.A.; Vasiliou, V.; Pharmacol. Rev.
2007, 59, 125.
10. Halliwell, B.; J. Neurochem. 1992, 59, 1609.
11. Lamensdorf, I.; Eisenhofer, G.; Harvey-White, J.; Nechustan, A.;
Kirk, K.; Kopin, I.J.; Brain Res. 2000, 868, 191.
12. Isloor, A.M.; Kalluraya, B.; Shetty, P.; Eur. J. Med. Chem. 2009,
44 (9), 3784.
13. Isloor, A.M.; Kalluraya, B.; Rao, M.; J. Saudi Chem. Soc. 2000, 4
(3), 265.
14. Kalluraya, B.; Isloor, A.M.; Frank, P.V.; Jagadesha, R.L.;
Shenoy, S.; Indian J. Heterocycl. Chem. 2001, 159.
15. Sunil, D.; Isloor, A.M.; Shetty, P.; Der Pharma Chemica 2009, 1
(2), 19.
16. (a) Parmar, S.S.; Pandey, B.R.; Dwivedi, C.; Harbison, R.D.; J.
Pharm: Sci. 1974, 63, 1152; (b) Manna, F.,Chimenti, F.; Bolasco,
A.; Secci, D.; Bizzarri, B.; Befani, O., Turini, P.; Mondovì, B.;
Alcaro, S.; Tafi, A.; Bioorg Med Chem Lett. 2002, 12, 3629; (c)
Gökhan-Kelekçi, N.; Yabanoglu, S.; Küpeli, E.; Salgin, U.;
Özgen, Ö.; Uçar, G.; Yesilada, E.; Kend, E.; Yesilada, A.; Bilgin,
A. A. Bioorg. Med. Chem. 2007, 15, 5775; (d) Palaska, E.;
Aytemir, M.; Uzbay, I. T.; Erol, D. Eur. J. Med. Chem. 2001, 36,
539; (e) Chimenti, F.; Fioravanti, R.; Bolasco, A.; Manna, F.;
Chimenti, P.; Secci, D.; Rossi, F.; Turini, P.; Ortuso, F.; Alcaro,
S.; Cardia, M. C. Eur. J. Med. Chem. 2008, 10, 2262; (f)
Fioravanti, R.; Bolasco, A.; Manna, F.; Rossi, F.; Orallo, F.;
Yáñez, M.; Vitali, A.; Ortuso, F.; Alcaro, S.; Bioorg Med Chem
Lett. 2010, 20, 6479; (g) Chimenti, F.; Carradori, S.;Secci, D.;
Bolasco, A.; Bizzarri, B.; Chimenti, P.; Granese, A.; Yáñez, M.;
2UDOORꢈꢀ)ꢁꢉꢀ(XUꢁꢀ-ꢁꢀ0HGꢁꢀ&KHPꢁꢀꢆꢄꢃꢄꢈꢀꢇꢊꢈꢀꢋꢄꢄꢉꢀꢂKꢅꢀùHQWUNꢈꢀ.ꢁꢉꢀ
Tan, O. U.; Çiftçi¸ S.Y.; , Uçar, G.; Palaska, E. Arch. Pharm.
Chem. Life Sci. 2012, 345, 695.
All the compounds unsubstituted on the 3-phenyl ring (3a-k)
were associated with potent and selective hMAO-B inihibitory
activity. 1-Methyl-3-phenyl-5-(p-tolyl)-4,5-dihydro-1H-pyrazole
3g was the most potent hMAO-B inhibitor identified in this study
with an IC50 of 9.6 nM coupled with high selectivity (SI = 145).
In comparison with the reference inhibitors, 3g was at least 2-
fold more active. The displacement of the para methyl group to
the meta position on the 5-phenyl ring resulted in compound 3f,
approximately 11-fold less potent as a hMAO-B inhibitor than
the corresponding para methyl analogue 3g. However, 3f
exhibited the highest hMAO-B selectivity due to its poor hMAO-
A affinity up to the highest concentration tested (100 PM).
Generally, the introduction of a hydroxyl group at the para
position of the 3-phenyl ring (4a-k) led to a reduction of efficacy
against both isoforms with respect to unsubstituted analogues 3a-
k. In fact, all the 3-(4-hydroxyphenyl)-1-methyl-5-phenyl-4,5-
dihydro-1H-pyrazoles (4a-k) exhibited hMAO inhibition potency
in the micromolar range. In this series of compounds, the
presence of a fluorine substituent on the 3-phenyl ring led to
selective hMAO-B inhibitors (4b-d), while the introduction of
either a chlorine or a methyl group resulted in compounds 4e-k
endowed with low or modest hMAO-B selectivity.
Moreover, the introduction of a hydroxyl substituent at the
ortho position of 3-phenyl ring, gave access to compounds 4l-u,
that showed different results. While compounds 4l, 4n, 4q and 4r
are essentially inactive against both hMAO isoforms, 4o and 4t
displayed potency in the submicromolar range against both
hMAO-A and hMAO-B resulting in compounds endowed with
poor selectivity. Moreover, the chloro-substituted derivatives 4s-
u exhibited enhanced inhibitory potency with respect to the
corresponding 3-phenyl and 3-(4-hydroxyphenyl) analogues (3h-
k and 4 h-k, respectively).
By comparing the hMAO-B inhibitory activity of the new N1-
methyl derivatives (3a-k and 4a-u) with that of recently reported
N1-thiocarbamoyl analogues,16g,h it is possible to point out that
the introduction of a smaller group, such as the methyl one, led
to compounds more active and selective towards hMAO-B
isoform. Moreover, most of the previously studied 3,5-diphenyl-
4,5-dihydro-1H-pyrazole derivatives substituted at N1 position
of the pyrazoline ring with phenyl, acyl-, or thiocarbamoyl-
groups were evaluated using rat or bovine instead of human
MAOs. Since species-dependent differences in substrate
specificity and inhibitor selectivity have been reported,16a-c,e no
further comparison is possible.
17. Bolasco, A.; Carradori, S.; Fioravanti, R.; Expert Opinion on
Therapeutic Patents 2010, 20 (7), 909.
18. Desideri, N.; Bolasco, A.; Fioravanti, R.; Proietti Monaco, L.;
Orallo, F.; Yáñez, M.; Ortuso, F.; Alcaro, S.; J. Med. Chem.
2011, 54 (7), 2155.
19. Desideri, N.; Fioravanti, R.; Monaco Proietti, L.; Biava M.;
Yáñez, M.; Ortuso, F.; Alcaro, S.; Eur. J. Med. Chem. 2013, 59,
91.
20. Yáñez, M.; Fraiz, N.; Cano, E.; Orallo, F.; Biochem. Biophys.
Res. Commun. 2006, 344, 688.
We can conclude that in this series of inhibitors, an
unsubstituted 3-phenyl ring seems to be an important chemical
feature to obtain potent and selective hMAO-B inhibitors.
Furthemore, the presence of the chlorine substituent at the 5-
phenyl ring, coupled with the presence of two hydroxyl groups at
Supplementary data
Supplementary data associated with this article can be found,
in the online version,