a solution of 2 : 1 dichloromethane–hexanes to remove the
catalyst. After removal of the solvent in vacuo, the orange solid
was triturated with methanol and filtered, to yield 6 (1.45 g,
68%) as a tan solid. 1H NMR (300 MHz, CDCl3): d 7.45
(m, 4H), 7.36 (d, 2H, J ~ 8.7),7.02 (d, 2H, J ~ 8.0), 5.45 (t, 1H,
J ~ 3.0), 3.89 (dt, 1H, J ~ 10.4, 3.0 Hz), 3.62 (m, 1H),
2.10–1.55 (m, 6H). 13C NMR (75 MHz, CDCl3): d 157.5,
133.2, 133.1, 131.8, 122.8, 122.3, 116.6, 116.0, 96.4, 90.8, 87.3,
62.3, 30.4, 25.3, 18.9. FT-IR(KBr) n/cm21: 2947, 2213, 1599,
1508, 1240, 1078, 1037, 825. HRMS (ESI) m/z: calcd. for
C19H17BrO2, 379.0304 ([M 1 Na]1), found 379.0312. M.p.
119–121 uC.
68.7, 68.3, 52.6, 47.3, 31.9, 29.53, 29.47, 26.2, 26.0, 23.0, 22.9,
14.45, 14.42. FT-IR (KBr) n/cm21: 3066, 2925, 2854, 2211,
1600, 1516, 1273, 1244. HRMS (EI) m/z: calcd. for C48H46O2,
654.3492 (M1), found 654.3467.
Compound ETO8. Prepared according to the general
procedure: 8 (100 mg, 0.02 mmol), 1-bromooctane (0.212 ml,
1.2 mmol), yielded ETO8 (94 mg, 64%).
Compound ETO10. Prepared according to the general
procedure: 8 (100 mg, 0.02 mmol), 1-bromodecane (0.250 ml,
1.2 mmol), yielded ETO10 (120 mg, 76%).
Compound 7. 5 (379 mg, 1.0 mmol), 6 (358 mg, 1.0 mmol),
Pd2(dba)3 (45 mg, 0.05 mmol), triphenylphosphine (130 mg,
0.50 mmol), and CuI (10 mg, 0.05 mmol) were combined and
placed under Ar. Triethylamine (10 ml) was added, the tube
sealed with a Teflon plug, and the solution heated to 100 uC for
24 h. The reaction solution was cooled, diluted with dichloro-
methane, and filtered through a plug of Celite, which was
rinsed with further dichloromethane. Removal of the solvent
in vacuo yielded a yellow solid which was absorbed onto silica
gel and purified via gradient column chromatography over
silica gel with 2 : 1 to 1 : 2 hexanes–dichloromethane, to yield 7
Compound ETO12. Prepared according to the general pro-
cedure: 8 (100 mg, 0.02 mmol), 1-bromododecane (0.310 ml,
1.2 mmol), yielded ETO12 (145 mg, 86%). Compound ETO12
was recrystallized from hexanes.
Acknowledgements
The authors wish to thank the National Science Foundation
(NSF) and the US Army Research Office (ARO), through a
MURI grant, for funding. T. M. L. wishes to thank Alex
Paraskos for helpful advice and discussions.
1
(471 mg, 73%). H NMR (300 MHz, CDCl3): d 7.58 (d, 2H,
J ~ 8.1), 7.52 (d, 2H J ~ 8.1), 7.47 (d, 2H, J ~ 8.7), 7.41 (m,
4H), 7.09 (d, 2H, J ~ 8.4), 7.03 (d, 1H, J ~ 8.4), 6.99 (m, 4H),
6.77 (d, 1H, J ~ 8.7 Hz), 5.93 (s, 1H), 5.91 (s, 1H), 5.43 (m, 2H),
3.87 (m, 2H), 3.58 (m, 2H), 2.16 (m, 2H), 2.10–1.55 (m, 10H).
13C NMR (75 MHz, CDCl3): d 157.3, 152.0, 149.1, 145.2,
145.1, 134.5, 13.1, 131.5, 129.5, 125.3, 124.2; 123.8, 123.4,
116.5, 116.1, 112.6, 112.1, 96.8, 96.4, 91.5, 91.2, 88.2, 62.3, 52.6,
References
1
2
L. J. Yu and A. Saupe, Phys. Rev. Lett., 1980, 45, 1000.
D. Demus, J. Goodby, G.W. Gray, H.-W. Spiess and V. Vill (ed.),
Handbook of LCs Vol. 2A: Low Molecular Weight LCs I, Wiley-
VCH, Weinheim, 1998.
3
4
5
Y. Galerne, Mol. Cryst. Liq. Cryst., 1988, 165, 131.
G. R. Luckhurst, Thin Solid Films, 2001, 393, 40.
J. J. Hunt, R. W. Date, B. A. Timimi, G. R. Luckhurst and
D. W. Bruce, J. Am. Chem. Soc., 2001, 123, 10115.
A. Ferrarini, G. R. Luckhurst, P. L. Nordio and S. J. Roskilly,
J. Chem. Phys., 1994, 100, 1460.
47.6, 30.7, 30.6, 25.54, 25.45, 19.3, 19.0. FT-IR (KBr) n/cm21
:
3040, 2941, 2870, 2214, 1600, 1515, 1238. HRMS (ESI) m/z:
calcd. for C46H38O4, 655.2843 ([M 1 H]1), found 655.2826.
M.p. 213–216 uC (with decomp.)
6
7
8
9
K. Kishikawa, M. C. Harris and T. M. Swager, Chem. Mater.,
1999, 11, 867.
Compound 8. 7 (392 mg, 0.5 mmol) was dissolved in mixture
of 12 ml dichloromethane and 6 ml methanol. p-TsOH (15 mg,
0.09 mmol) was added and the solution stirred at room
temperature for 1 h. The solventwas removed in vacuo and the
residue was purified via column chromatography over silica gel
with 10 : 1 chloroform–ethyl acetate, to yield 8 (230 mg, 80%)
as an off-white solid. Compound 8 was recrystallized from
L. Omne`s, B. A. Timimi, T. Gelbrich, M. B. Hursthouse,
G. R. Luckhurst and D. W. Bruce, Chem. Commun., 2001, 2248.
(a) S. Norvez and J. Simon, J. Chem Soc., Chem. Commun., 1990,
1398; (b) S. Norvez and J. Simon, Liq. Cryst., 14, 1389;
(c) S. Norvez, J. Org. Chem., 1993, 58, 2414.
10 (a) T. R. Kelly, J. P. Sestelo and I. Tellitu, J. Org. Chem., 1998, 63,
3655; (b) T. R. Kelly, R. A. Silva, H. De Silva, S. Jasmin and
Y. Zhao, J. Am. Chem. Soc., 2000, 122, 6935.
11 V. E. Williams and T. M. Swager, Macromolecules, 2000, 33, 4069.
12 D. Shen, S. Diele, G. Pelzl, I. Wirth and C. Tschierske, J. Mater.
Chem., 1999, 9, 661.
13 K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
1975, 50, 4467.
14 P. D. Bartlett, M. J. Ryan and S. G. Cohen, J. Am. Chem. Soc.,
1942, 64, 2649.
15 Q. Zhou and T. M. Swager, J. Org. Chem., 1995, 60, 7096.
16 N. Boccara, R. Mejdaniand and L. De Seze, J. Phys., 1997, 38,
149.
17 (a) S. J. P. Bousquet and D. W. Bruce, J. Mater. Chem., 2001, 11,
1769; (b) X.-H. Liu, B. Heinrich, I. Manners, D. Guillon and
D. W. Bruce, J. Mater. Chem., 2000, 10, 637; (c) P. A. Henderson,
R. T. Inkster, J. M. Seddon and C. T. Imrie, J. Mater. Chem.,
2001, 11, 2722; (d) C. T. Imrie and G. R. Luckhurst, J. Mater.
Chem., 1998, 8, 1339.
1
chloroform. H NMR (300 MHz, CDCl3): d 7.60(d, 1H, J ~
8.1), 7.55 (d, 2H, J ~ 8.1), 7.47 (d, 2H, J ~ 9.0), 7.44 (m, 4H),
7.06 (d, 1H, J ~ 8.4), 7.02 (dd, 4H, J ~ 5.1, 3.1), 6.84 (d, 2H,
J ~ 8.1), 6.45 (d, 1H, J ~ 8.7 Hz), 5.95 (s, 1H), 5.84 (s, 1H),
4.89 (s, 1H), 4.88 (s, 1H). 13C NMR (75 MHz, CD3CN): d
158.3, 152.7, 150.2, 145.9, 145.7, 133.9, 133.8, 132.5, 133.3,
132.1, 130.2, 126.1, 126.0, 124.7, 124.4, 124.0, 123.8, 116.4,
114.7, 114.1, 110.7, 92.2, 91.5, 89.6, 88.0, 52.8, 47.5. FT-IR
(KBr) n/cm21: 3399, 3069, 2965, 2212, 1606, 1517. HRMS (EI)
m/z: calcd. for C36H22O2, 486.1614 (M1), found 498.1623. M.p.
187–189 uC.
Compound ETO6. Prepared according to the general
procedure: 8 (100 mg, 0.02 mmol), 1-iodohexane (0.184 ml,
1.2 mmol), yielded ETO6 (104 mg, 77%). Representative
characterization for the ETOn series, the remaining character-
ization data are contained in the ESI. 1H NMR (300 MHz,
CDCl3): d 7.60 (d, 2H, J ~ 8.1), 7.55 (d, 2H, J ~ 8.1), 7.50
(d, 2H, J ~ 8.7), 7.45 (dd, J ~ 5.0, 3.2), 7.41 (dd, 2H, J ~ 5.0,
3.2), 7.13 (d, 1H, J ~ 8.4), 7.00 (dd, 4H, J ~ 5.3, 3.2), 6.89
(d, 2H, J ~ 9.0), 6.55 (d, 1H, J ~ 8.7 Hz), 5.94 (s, 1H), 5.92 (s,
1H), 3.99 (m, 4H), 1.83 (m, 4H), 1.60–1.30 (m, 12H), 0.94 (m,
6H).13C NMR (75 MHz, CDCl3): d 159.4, 154.2, 149.1, 145.33,
145.25, 133.8, 133.2, 131.5, 129.6, 125.3, 125.2, 124.1, 123.8,
123.4, 123.3, 115.0, 114.7, 110.9, 109.5, 91.6, 91.1, 89.4, 88.1,
18 (a) (OC7H15)2—enantiotropic with nematic phase on heating and
nematic and smectic phases on cooling: C. Pugh and V. Percec,
Polym. Bull., 1990, 23, 177; (b) (OC8H17)2 and (OC12H25)2—
enantiotropic with various smectic and nematic phases on heating
and cooling: A. R. A. Palmans, M. Eglin, A. Montali, C. Weder
and P. Smith, Chem. Mater., 2000, 12, 472.
19 T. M. Long and T. M. Swager, Adv. Mater., 2001, 13, 601.
20 (a) W. Weissflog and D. Demus, Cryst. Res. Technol., 1983, 18,
K21; (b) W. Weissflog and D. Demus, Cryst. Res. Technol., 1984,
19, 55; (c) D. Demus, A. Hauser, C. Selbmann and W. Weissflog,
Cryst. Res. Technol., 1984, 19, 271.
21 D. W. Bruce and X.-H. Liu, J. Chem. Soc., Chem. Commun., 1994,
729.
3412
J. Mater. Chem., 2002, 12, 3407–3412