B. Pita et al. / Tetrahedron Letters 43 (2002) 7929–7932
7931
Acknowledgements
Table 3. Synthesis of tetrahydroindol-4-ones 6e–g
This work was supported by the Xunta de Galicia
(Spain) under grant PGIDT01PXI20309PR. Beatriz
Pita is grateful to the University of Santiago de Com-
postela for a predoctoral fellowship.
References
Entry
Substrate
R3
Tetrahydroindol-4-one
R4
(Yield%)
Mp (°C)
1. (a) Brea, J.; Rodrigo, J.; Carrieri, A.; Sanz, F.; Cadavid,
M. I.; Enguix, M. J.; Villazo´n, M.; Mengod, G.; Caro,
Y.; Masaguer, C. F.; Ravin˜a, E.; Centeno, N. B.; Carotti,
A.; Loza, M. I. J. Med. Chem. 2002, 45, 54–71; (b)
Ravin˜a, E.; Masaguer, C. F. Current Med. Chem. CNS
Agents 2001, 1, 43–62.
1
2
3
3e
3f
H
CH3
CH3
H
CH3
C2H5
6e (40)
6f (60)
6g (70)
87–89
141–142
157–158
3g
2. Pita, B.; Masaguer, C. F.; Ravin˜a, E. Tetrahedron Lett.
2000, 41, 9829–9833.
3. Bilbao, E. R.; Alvarado, M.; Masaguer, C. F.; Ravin˜a, E.
Tetrahedron Lett. 2002, 43, 3551–3554.
4. Masaguer, C. F.; Ravin˜a, E. Tetrahedron Lett. 1996, 37,
5171–5174.
hydroindol-4-ones 6e–g were thus obtained as white
crystalline solids in moderate to good yields (Table 3).
5. Masaguer, C. F.; Ravin˜a, E.; Loza, I.; Fontenla, J. A.
Bioorg. Med. Chem. Lett. 1997, 7, 913–918.
6. Bobbitt, J. M.; Kulkarni, C. L.; Dutta, C. P.; Kofod, H.;
Chiong, K. N. J. Org. Chem. 1978, 43, 3541–3544.
7. Aoyagi, Y.; Mizusaki, T.; Ohta, A. Tetrahedron Lett.
1996, 37, 9203–9206.
In order to obtain the sulfonate esters, demethylation
of 6e–g was carried out by using 1 equiv. of BBr3 at
−70°C to +20°C affording the alcohols 7e–g in good
yields (Table 4). Tosylation of 7e–g by using p-toluene-
sulphonyl chloride in pyridine gave the corresponding
sulfonate esters 8e–g11 as white crystalline solids (Table
4).12
8. General Procedure:
A mixture of the g-hydroxy-
enaminone 3a–d (1 mmol), mesityl bromide (1.1 mmol),
palladium acetate (0.03 mmol), triphenylphosphine (0.06
mmol), potassium carbonate (1.2 mmol) and DMF (5 ml)
was heated at 150°C for 4 h. The resulting mixture was
filtered through a Celite pad and then evaporated under
reduced pressure to give an oily residue, which was
purified by column chromatography to give the corre-
sponding quinolines.
In conclusion, we have developed a facile and efficient
synthesis of new conformationally restricted butyrophe-
nones in the indole and quinoline series via palladium-
catalyzed oxidation of hydroxyenaminones and
subsequent cyclization followed by spontaneous aroma-
tization. Because of the simplicity of the methodology
and the shorter reaction times than those expected, this
synthetic procedure proved to be attractive and of great
practical value. This methodology provides a new
approach to the synthesis of potential CNS-active
agents. Work in progress in our Laboratory will be
reported in due course.
1
9. Compound 5c: H NMR (CDCl3, 300 MHz) l 8.68 (dd,
1H, J=4.8, 1.8 Hz, H-2), 8.24 (dd, 1H, J=7.8, 1.8 Hz,
H-4), 7.78 (d, 2H, J=8.3 Hz, Ar), 7.35 (d, 2H, J=8.1 Hz,
Ar), 7.30 (dd, 1H, J=7.8, 4.8 Hz, H-3), 4.10 (d, 2H,
J=5.5 Hz, CH2OTs), 2.93–2.83 (m, 1H, aliphatics), 2.65–
2.55 (m, 4H, aliphatics), 2.46 (s, 3H, CH3-Ph).
Table 4. Synthesis of 6-(p-toluenesulfonyloxymethyl)-4,5,6,7-tetrahydroindol-4-ones 8e–g
Entry
Substrate
Alcohol
Tosylate
R3
R4
Mp (°C)
Mp (°C)
1
2
3
6e
6f
6g
H
CH3
CH3
H
CH3
CH2CH3
7e
7f
7g
169–171
213–214
178–180
8e
8f
8g
162–164
207–209
188–189