C O M M U N I C A T I O N S
to higher vibronic ground states (0 f v, v ) 0, 1, 2, 3), thereby
red-shifting the spectra. As the concentration increases (>1mM),
the folded molecular structure further assembles and intensifies the
red emissions (0f3) at the expenses of decreasing green (0f0)
and yellow (0f1) emissions. Although spectroscopic features may
vary in detail, the trimer or higher oligomers predominantly emit
red color (see the graphic in the Table of Contents).
In summary, folding dominates at low concentrations (<∼1
mM); it precedes self-assembling at slightly higher concentrations
(∼1-100 mM). Although both are driven by the same enthalpy
effect, the difference is due to “high” local concentration of foldable
units within an oligomer. At very high concentrations, our model
predicts that self-assembling could precede folding, giving rise to
a completely different aggregate morphology; however, one cannot
investigate this due to solubility limitations.
Figure 2. (a) Plot of experimental folding Kfold (open circles: NMR data;
solid circles: UV-vis data) and self-assembling KSA (solid squares)
constants (TCE) against 1/T, which yields comparable enthalpies. (b)
Theoretical prediction of unfolded dimer [A-A], folded dimer [A2], and
dimer-assembled tetramer [A2:A2] and hexamer [A2:A2:A2].
Acknowledgment. We acknowledge the support of DOE-Los
Alamos, Sub-contract (28893-001-01-35) and the Chemistry De-
partment, the CMR, the NMR center, and College of Sciences at
WSU. We thank the reviewers for helpful discussions.
Scheme 2
Supporting Information Available: Synthetic procedures of 1-6,
1H NMR shifts, fluorescence spectra, and UV-vis model for Kfold
(PDF). This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Recker, J.; Tomcik, D. J.; Parquette, J. R. J. Am. Chem. Soc. 2000,
122, 10298. (b) Prince, R. B.; Barnes, S. A.; Moore, J. S. J. Am. Chem.
Soc 2000, 122, 2758. (c) Zych, A. J.; Iverson, B. I. J. Am. Chem. Soc.
2000, 122, 8898. (d) Cubberley, M. S.; Iverson, B. L. J. Am. Chem. Soc.
2001, 123, 7560.
(2) Nguyen, J. Q.; Iverson, B. L. J. Am. Chem. Soc. 1999, 121, 2639.
(3) (a) Lin, W. B.; Lee T. L.; Lyman, P. F.; Lee, J. J.; Bedzyk, M. J.; Marks,
T. J. J. Am. Chem. Soc. 1997, 119, 2205. (b) Marks, T. J.; Ratner, M. A.
Angew. Chem., Int. Ed. Engl. 1995, 34, 155. (c) Zubarev, E. R.; Pralle,
M. U.; Li, L. M.; Stupp, S. I. Science 1999, 283, 523.
(4) (a) Oh, K.; Jeong, K. S.; Moore, J. S. Nature 2001, 414, 889. (b) Bert,
V.; Huc, I.; Khoury, R. G.; Krische, M. J.; Lehn, J.-M. Nature 2000,
407, 720. (c) Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. J.
Am. Chem. Soc. 2001, 123, 4105. (d) Orr, G. W.; Barbour, L. J.; Atwood,
J. L. Science 1999, 285, 1049.
(5) (a) Saven, J. G. Chem. ReV. 2001, 101, 3113. (b) ElSayed, M. A.; Logunov,
S. Pure Appl. Chem. 1997, 69, 749. (c) Song, L.; Elsayed, M. A.; Lanyi,
J. K. Science 1993, 261, 891.
(6) (a) Wu, J.; Lizarzaburu, M. E.; Kurth, M. J.; Liu, L.; Wege, H.; Zern, M.
A.; Nantz, M. H. Bioconjugate Chem. 2001, 12 (2), 251. (b) Blackburn,
G. M.; Walcher, G. Pol. J. Chem. 2001, 75, 1183.
As the oligomer concentrations increase ([Ao] > 1 mM), the Ha
and Hb resonance peaks shift further upfield. The same forces that
drive the oligomer to fold now drive aggregation into larger
nanostructures (Scheme 2). Therefore, we expect these two
processes to have similar enthalpies, and the difference between
folding and self-organization should be largely due to entropic
contributions.
The self-assembly formation constant (KSA) can be determined
by solving an oversimplified equal-KSA power series using observed
chemical shift (δobs) at various concentrations (Figure 1a).11 Fitting
this power series (solid lines in Figure 1a) to the experimental data,
we obtained KSA ) 31 M-1 in TCE and KSA ) 90 M-1 in CHCl3
at 20 °C. Figure 2 shows the van’t Hoff plots [ln K ) ∆S°/R -
∆H° /(RT)] of the variable temperature UV-vis and 1H NMR data
for both the folding (Kfold) and the self-assembling (KSA) processes.
As expected, enthalpies for folding and self-assembling are
(7) Ogawa, A. K.; Wu, Y. Q.; McMinn, D. L.; Liu, J. Q.; Schultz, P. G.;
Romesberg, F. E. J. Am. Chem. Soc. 2000, 122, 3274.
(8) For DNA coupling, see: (a) Sobol, R. W.; Henderson, E. E.; Kon, N.;
Shao, J.; Hitzges, P.; Mordechai, E.; Reichenbach, N. L.; Charubala, R.;
Schirmeister, H.; Pfleiderer, W.; Suhadolnik, R. J. J. Biol. Chem. 1995,
270, 5963. (b) Hayakawa, Y.; Kawai, R.; Hirata, A.; Sugimoto, J.; Kataoka,
M.; Sakakura, A.; Hirose, M.; Noyori, R. J. Am. Chem. Soc. 2001, 123,
8165.
(9) (a) Davydov, A. S. Theory of Molecular Excitons; Plenum: New York,
1971. (b) Fo¨rster, T. Modern Quantum Chemistry, Part III; Singanoglu,
O, Ed.; Academic Press: New York, 1965. (c) So, F. F.; Forrest, S. R.
Phys. ReV. Lett. 1991, 66, 2649. (d) Hennessy, M. H.; Soos, Z. G.; Pascal,
R. A., Jr.; Girlando, A. Chem. Phys. 1999, 245, 199.
comparable with ∆H° ) - 3.01 ( 0.06 kcal/mol and ∆H°
SA
(dimer) ) - 2.44 (fo0ld.12 kcal/mol. This indicates both folding
and self-assembling of HPTD molecules are exothermic processes
in organic solvents. Self-organization requires more ordering;
therefore, it should have a larger entropy change than that of folding
(10) Here, δ1 is the chemical shift of the free monomer or unfolded dimer, δ2
is the chemical shift of the folded dimer, δobs is the observed chemical
shift in rapid exchange between folded dimer and unfolded dimer.
(11) The theoretical model is described, and the entropy is calculated in Wang,
W.; Li, L.-S. Han, J. J.; Wang, L-Q.; Li, A. D. Q. Manuscript submitted.
into similar final structures. Experimentally, we observed ∆S°
)
fold
-6.60 ( 0.40 cal/mol‚K and ∆S° (mono) ) -17.5 ( 0.7
SA
(12) Folding processes: A-A T A2, ∆S° ) S(A2) - S(A-A); SA
cal/mol‚K,11 indicating that folding is favored by entropy contribu-
fold
processes: A + A T A: A, ∆S°SA ) S(A:A) - 2S(A). Assume S(A2) ≈
tion.12
S(A:A), then ∆S°fold - ∆S° ) 2S(A) - S(A-A) > 0. Thus, ∆S°
>
SA
fold
∆SS°A.
As the foldable oligomers become larger and absorption blue-
shifts to 500 nm (0f1), the photoluminescence favors emissions
JA027186H
9
J. AM. CHEM. SOC. VOL. 125, NO. 5, 2003 1121