C O M M U N I C A T I O N S
Scheme 6. Final Stages of the Total Synthesisa
We also acknowledge financial support from The Sumitomo
Foundation, Novartis Foundation (Japan) for the Promotion of
Science, and The Akiyama Foundation. We thank Professor G.
Appendino (Dipartimento di Scienze Chimiche, Alimentari, Far-
maceutiche e Farmacologiche) for providing natural ingenol.
Supporting Information Available: Experimental details and
spectroscopic data (PDF). This material is available free of charge via
References
(1) (a) Hecker, E. Cancer Res. 1968, 28, 2338. (b) Zechmeister, K.; Brandl,
F.; Hoffe, W.; Hecker, E.; Opferkuch, H. J.; Adolf, W. Tetrahedron Lett.
1970, 4075. See also; (c) Uemura, D.; Hirata, Y. Tetrahedron Lett. 1971,
3673.
(2) For recent reviews on synthetic studies on ingenol, see: (a) Rigby, J. H.
Stud. Nat. Prod. Chem. 1993, 12, 233. (b) Kim, S.; Winkler, J. D. Chem.
Soc. ReV. 1997, 26, 387.
(3) For examples, (a) Kupchan, S. M.; Uchida, I.; Branfman, A. R.; Dailey,
R. G.; Fei, B. Y. Science 1976, 191, 571. (b) Hecker, E. Pure Appl. Chem.
1977, 49, 1423. (c) Hasler, C. M.; Acs, G.; Blumberg, M. Cancer Res.
1992, 52, 202. (d) Fujiwara, M.; Ijichi, K.; Tokuhisa, K.; Katsuura, K.;
Shigeta, S.; Konno, K.; Wang, G.-Y.-S.; Uemura, D.; Yokota, T.; Baba,
M. Antimicrob. Agents Chemother. 1996, 40, 271.
(4) For recent reports that are not covered in ref 2, see: (a) Winkler, J. D.;
Kim, S.; Harrison, S.; Lewin, N. E.; Blumberg, P. M. J. Am. Chem. Soc.
1999, 121, 296. (b) Kigoshi, H.; Suzuki, Y.; Aoki, K.; Uemura, D.
Tetrahedron Lett. 2000, 41, 3927. (c) Tang, H.; Yusuff, N.; Wood, J. L.
Org. Lett. 2001, 3, 1563. (d) Rigby, J. H.; Bazin, B.; Meyer, J. H.;
Mohammadi, F. Org. Lett. 2002, 4, 799.
a Reagents and conditions: (a) TESOTf, 2,6-lutidine, CH2Cl2; (b) TMSCl,
Et3N, LDA, THF; (c) NBS, CH2Cl2; (d) HF, CH3CN; (e) CH2I2, MeLi,
THF (39% in 5 steps); (f) Zn, NH4Cl, THF-H2O (91%); (g) KOH, MeOH
(89%).
isomerization reaction. These results led us to examine an alternative
method for ring-opening, namely, reductive cleavage of a halo
epoxide.18
With a view to introducing a bromine at the C(7) position, ketol
30 was converted into enol silyl ether 32. In these reactions, the
R-siloxyketone intermediate showed unusual lability and gave a
complex mixture even by silica gel column chromatography.
Although the R-siloxyketone also underwent complete decomposi-
tion in the presence of LDA, it was found that addition of LDA to
a mixture of the crude R-siloxyketone and TMSCl effects the
desired transformation.
(5) Winkler, J. D.; Rouse, M. B.; Greaney, M. F.; Harrison, S. J.; Jeon, Y. T.
J. Am. Chem. Soc. 2002, 124, 9726.
(6) Winkler, J. D.; Henegar, K. E. J. Am. Chem. Soc. 1987, 109, 2850.
(7) Nakamura, T.; Matsui, T.; Tanino, K.; Kuwajima, I. J. Org. Chem. 1997,
62, 3032.
(8) Tanino, K.; Nakamura, T.; Matsui, T.; Kuwajima, I. Tennen Yuki
Kagobutsu Toronkai Koen Yoshishu 1997, 39, 1.
The reaction of 32 with NBS19 followed by desilylation afforded
R-bromoketone 33 that was converted into epoxide 34 by adopting
a method similar to that described above. Treatment of 34 with
zinc dust and an aqueous NH4Cl solution induced reductive cleavage
of the bromo epoxide moiety, and the resulting allylic alcohol 35
was subjected to hydrolysis to afford ingenol, which gave spectral
data in full agreement with those of the natural product.
In conclusion, total synthesis of ingenol was accomplished on
the basis of novel key reactions, namely an intramolecular cycliza-
tion reaction of acetylene dicobalt complex 15, a rearrangement
reaction of epoxy alcohol 18 for constructing the ingenane skeleton,
and a stereoselective double dihydroxylation reaction of diene 25.
The 45-step transformation from commercially available compound
5 afforded ingenol in ca. 0.1% overall yield. Further studies on
asymmetric total synthesis of ingenol are currently under way in
our laboratory.
(9) Dalton, D. R.; Dutta, V. P.; Jones, D. C. J. Am. Chem. Soc. 1968, 90,
5498.
(10) For examples of ring-enlargement reactions via rearrangement of an epoxy
alcohol, see: (a) Maruoka, K.; Hasegawa, M.; Yamamoto, H.; Suzuki,
K.; Shimazaki, M.; Tsuchihashi, G. J. Am. Chem. Soc. 1986, 108, 3827.
(b) Tu, Y. Q.; Sun, L. D.; Wang, P. Z. J. Org. Chem. 1999, 64, 629.
(11) Bredereck, H.; Simchen, G.; Rebsdat, S.; Kantlehner, W.; Horn, P.; Wahl,
R.; Hoffman, H.; Grieshaber, P. Ber. 1968, 101, 41. See also: Trast, B.
M.; Preckel, M. J. Am. Chem. Soc. 1973, 95, 7862.
(12) Murai, A.; Tanimoto, N.; Sakamoto, N.; Masamune, T. J. Am. Chem.
Soc. 1988, 110, 1985.
(13) Corey, E. J.; Kim, S. U. J. Am. Chem. Soc. 1972, 94, 7586.
(14) (a) Tarhouni, R.; Kirschleger, B.; Rambaud, M.; Villieras, J. Tetrahedron
Lett. 1984, 25, 835. (b) Sadhu, K. M.; Matteson, D. S. Tetrahedron Lett.
1986, 27, 795. Use of diiodomethane instead of dibromomethane or
chloroiodomethane effected rapid formation of the epoxide at a low
temperature.
(15) Yasuda, A.; Tanaka, S.; Oshima, K.; Yamamoto, H.; Nozaki, H. J. Am.
Chem. Soc. 1974, 96, 6513.
(16) Eschinasi, E. H. J. Org. Chem. 1970, 35, 1598.
(17) Murata, S.; Suzuki, M.; Noyori, R. J. Am. Chem. Soc. 1979, 101, 2738.
(18) For a similar transformation, see: Concello´n, J. M.; Llavona, L.; Bernad,
P. L. Tetrahedron 1995, 51, 5573.
(19) Reuss, R. H.; Hassner, A. J. Org. Chem. 1974, 39, 1785.
Acknowledgment. This research was supported in part by the
Ministry of Education, Culture, Sports, Science and Technology.
JA029226N
9
1500 J. AM. CHEM. SOC. VOL. 125, NO. 6, 2003