attack of single-strand-specific nucleases. In the present case,
calf spleen phosphodiesterase (E.C. 3.1.16.1) was employed,
which digests single-stranded oligonucleotides from the 5′-
terminus, i.e., the terminus where the strands are unmodified.
Modified strands with 2′-appendages strongly stabilizing their
duplexes could be expected to be in the single-stranded state
to the smallest extent, thus resisting nuclease attack the
longest. To specifically select for strands with “caps” better
than the known nalidixic acid residue, 1 equiv of compound
16NA was added to every library. The MALDI-TOF mass
spectra of mixtures undergoing nuclease selection were
screened for peaks of full length oligonucleotides surviving
longer than 16NA. While the libraries produced with
mixtures 1-6 did not yield compounds exceeding 16NA in
lifetime, the selection of the library prepared with mixture 7
did show that 16AQ was a “lone survivor” (Figure S8,
Supporting Information).
Accordingly, 16AQ was synthesized individually, HPLC
purified, and subjected to UV melting experiments under
various buffer conditions (Table 1). Compared to control
duplex (ACGCGT)2 (17)2, that of lead compound
(ACGCGU-NA)2 (16NA)2, and those of the two phenyl-
alanine-linked hybrids (ACGCGU-Phe-NA)2 (7NA)2 and
(ACGCGU-Phe-AQ)2 (7AQ)2, the duplex of 16AQ melted
at higher temperatures under all conditions tested. The
melting point increase (∆Tm) was greatest in phosphate
buffered saline solution, reaching +28.1 or +14 °C per
modification at 1 M NaCl and 10 mM phosphate buffer. This
is the highest melting point increase observed to date for an
acylamido/deoxy-modified DNA hexamer, slightly above the
27.8 °C realized for a 5′-appended quinolone, which reached
this value at 10 mM salt, i.e., conditions less favorable for
hybridizations on DNA chips.22,23
It is interesting to note that the “winner cap” identified in
this exploratory combinatorial study has been tested as a 5′-
cap in our earlier work21b and did not come up as a strongly
stabilizing residue. Nor did cholic acid, the residue of which
is known to tightly bind to terminal base pairs when
appended to the 5′-terminus as an acylamido substituent,8b
produce a hit, suggesting that the duplex-stabilizing effect
of the anthraquinone carboxylic acid residue is not an
unspecific effect due to its hydrophobicity. Modeling and
force field minimizations performed with an anthracene
carboxylic acid moiety suggest that a residue of this shape
can stack on the terminal base pair formed by the aminode-
oxyuridine without disruption of base pairing.24
In conclusion, the results presented here show that
oligonucleotides with 2′-acylamido-2′-deoxyuridine residues
at the 3′-terminus can be prepared via a short and rugged
route allowing for the generation of small combinatorial
libraries. Anthraquinone carboxylic acid as the building block
for the acyl portion of a modified hexamer leads to
significantly enhanced duplex stability.
Acknowledgment. This work was supported by Deutsche
Forschungsgemeinschaft, Grants RI 1063/1-2 and FOR 434.
The authors thank Jan Rojas Stu¨tz for help with the acquisi-
tion of MALDI-TOF mass spectra, Siegfried Herzberger for
synthetic support, and A. Friemel for the acquisition of NMR
spectra.
(1) Rosenblum, B. B.; Lee, L. G.; Spurgeon, S. L.; Khan, S. H.; Menchen,
S. M.; Heiner, C. R.; Chen, S. M. Nucleic Acids Res. 1997, 25, 4500-
4504.
(2) Hedge, P.; Qi, R.; Abernathy, K.; Gay, C.; Dharap, S.; Gaspard, R.;
Hughes, J. E.; Snesrud, E.; Lee, N.; Quackenbush, J. BioTechniques 2000,
29, 548-563.
(3) (a) Tyagi, S.; Kramer, F. R. Nat. Biotechnol. 1996, 14, 303-308.
(b) Kuhn, H.; Demidov, V. V.; Coull, J. M.; Fiandaca, M. J.; Gildea, B.
D.; Frank-Kamenetskii, M. D. J. Am. Chem. Soc. 2002, 124, 1097-1103.
(4) (a) Maskos, U.; Southern, E. M. Nucleic Acids Res. 1992, 20, 1679-
1684. (b) Lamture, J. B.; Beattie, K. L.; Burke, B. E.; Eggers, M. D.; Ehrlich,
D. J.; Fowler, R.; Hollis, M. A.; Kosicki, B. B.; Reich, R. K.; Smith, S. R.
Nucleic Acids Res. 1994, 22, 2121-2125. (c) Pirrung, M. C.; Odenbaugh,
A. L.; Davis, J. D. Langmuir 2000, 16, 2185-2191.
(5) Montenay-Garestier, T.; Sun, J. S.; Chomilier, J.; Mergny, J. L.;
Takasugi, M.; Asseline, U.; Thuong, N.; Rougee, M.; Helene, C. In
Molecular Basis of Specificity in Nucleic Acid-Drug Interactions; Pullman,
B., Jortner, J., Eds.; Kluwer Academic Publishers: Norwell, MA, 1990;
pp 275-290.
(6) Manoharan, M.; Tivel, K. L.; Condon, T. P.; Andrade, L. K.; Barber-
Peoch, I.; Inamati, G.; Shah, S.; Mohan, V.; Graham, M. J.; Bennett, C. F.;
Crooke, S. T.; Cook, P. D. Nucleosides Nucleotides 1997, 16, 1129-1138.
(7) Roberts, R. W.; Szostak, J. W. Proc. Natl. Acad. Sci. U.S.A. 1997,
94, 12297-12302.
(8) (a) Sarracino, D. A.; Steinberg, J. A.; Vergo, M. T.; Woodworth, G.
F.; Tetzlaff, C. N.; Richert, C. Bioorg. Med. Chem. Lett. 1998, 8, 2511-
2516. (b) Bleczinski, C. F.; Richert, C. J. Am. Chem. Soc. 1999, 121,
10889-10894.
(9) Kryatova, O. P.; Connors, W. H.; Bleczinski, C. F.; Mokhir, A. A.;
Richert, C. Org. Lett. 2001, 3, 987-990.
(10) Tuma, J.; Connors, W. H.; Stitelman, D. H.; Richert, C. J. Am. Chem.
Soc. 2002, 124, 4236-4246.
(11) Cohen, S. B.; Cech, T. R. J. Am. Chem. Soc. 1997, 119, 6259-
6268.
(12) Milne, L.; Perrin, D. M.; Sigman, D. S. Proc. Natl. Acad. Sci. U.S.A.
2000, 97, 3136-3141.
(13) Yamana, K.; Mitsui, T.; Nakano, H. Tetrahedron 1999, 55, 9143-
9150.
(14) Hendrix, C.; Devreese, B.; Rozenski, J.; van Aerschot, A.; De Bruyn,
A.; van Beeumen, J.; Herdewijn, P. Nucleic Acids Res. 1995, 23, 51-57.
(15) Verheyden, J. P. H.; Wagner, D.; Moffat, J. G. J. Org. Chem. 1971,
36, 250-254.
(16) McGee, D. P. C.; Vargeese, C.; Zhai, Y.; Kirschenheuter, G. P.;
Settle, A.; Diedem, C. R.; Pieken, W. A. Nucleosides Nucleotides 1995,
14, 1329-1339.
(17) McGee, D. P. C.; Sebesta, D. P.; O’Rourke, S. S.; Martinez, R. L.;
Jung, M. E.; Pieken, W. A. Tetrahedron Lett. 1996, 37, 1995-1998.
(18) Fersht, A. Enzyme Structure and Mechanism, 2nd ed.; W. H.
Freeman and Company: New York, 1992.
(19) (a) Uhlmann, E.; Engels, J. Tetrahedron Lett. 1986, 27, 1023-1026.
(b) Sande, v. d. J. H.; Ramsing, N. B.; Germann, M. W.; Elhorst, W.;
Kalisch, B. W.; Kitzing, v. E.; Pon, R. T.; Clegg, R. C.; Jovin, T. M. Science
1988, 241, 551-557. (c) Koga, M.; Moore, M. F.; Beaucage, S. L. J. Org.
Chem. 1991, 56, 3757-3759. (d) Beier, M.; Stephan, A.; Hoheisel, J. D.
HelV. Chim. Acta 2001, 84, 2089-2095.
(20) Dombi, K. L.; Steiner, U. E.; Richert, C. J. Combin. Chem. 2003,
in press.
(21) (a) Altman, R. K.; Schwope, I.; Sarracino, D. A.; Tetzlaff, C. N.;
Bleczinski, C. F.; Richert, C. J. Comb. Chem. 1999, 1, 493-508. (b) Mokhir,
A. A.; Tetzlaff, C. N.; Herzberger, S.; Mosbacher, A.; Richert, C. J. Combin.
Chem. 2001, 3, 374-386.
Supporting Information Available: Experimental pro-
cedures and MALDI-TOF mass spectra. This material is
OL020212W
(22) Selected recent reviews: (a) Ramsay, G. Nature Biotechnol. 1998,
16, 40-44. (b) Southern, E. M.; Mir, K.; Shchepinov, M. Nature Genetics
1999, 21, 5-9. (c) Lockhardt, D. J.; Winzeler, E. A. Nature 2000, 405,
827-836.
(23) (a) Evertsz, E. M.; Au-Young, J.; Ruvolo, M. V. Lim, A. C.;
Reynolds, M. A. BioTechniques 2001, 31, 1182-1192. (b) Dombi, K. L.;
Griesang, N.; Richert, C. Synthesis 2002, 816-824.
(24) Mokhir, A.; Richert, C. Unpublished results.
250
Org. Lett., Vol. 5, No. 3, 2003