2066
T. Sakakibara et al. / Carbohydrate Research 337 (2002) 2061–2067
Anal. Calcd for C23H24O7S: C, 62.15; H, 5.44; S, 7.21.
Found: C, 61.89; H, 5.20; S, 7.05.
H-3), 3.83 (dd, 1 H, J4,5 ꢀ0 Hz, H-4), 4.2–4.4 (3 H, m,
H-5, -6, 6%), 5.09 (d, 1 H, J3%a,3%e 12.0 Hz, H-3%e), 3.53
(dd, 1 H, H-3%a), 5.28 (s, 1 H, PhCH), 3.03 (s, 3 H,
OMe), 1.86 (s, 3 H, SO2Tol), and 1.68 (s, 3 H, OAc);
NOESY: correlation between H-2 and H-3%e; PhCH
and H-3%a. Anal. Calcd for C24H28O8S: C, 60.49; H,
5.92; S, 6.73. Found: C, 60.70; H, 5.92; S, 6.60.
Irradiation of 2 in methanol.—To a solution of 2
(Ref. 9, 570 mg, 1.23 mmol) in methanol (distilled over
Mg, 540 mL) in the presence of benzophenone (36 mg,
0.20 mmol) was cooled at ꢀ10 °C and irradiated in a
Riko photoreactor with a high-pressure mercury lamp
in an H2O–ethylene glycol cooled Pyrex immersion-
well for ꢀ10 h under N2. After evaporation, the syrup
was dissolved in CH2Cl2 (50 mL) and pyridine (1.84
mL, 22.7 mmol) and cooled to −20 °C. AcCl (1.63
mL, 22.9 mmol) was added dropwise to the solution.
After 2.5 h, the mixture was extracted with CH2Cl2,
and the extracts were washed with aq HCl, aq NaCl, aq
NaHCO3, dried, and evaporated. The syrup was chro-
matographed with 30:1 hexane–AcOEt to give 19 (75
mg, 11%) and a 3:2 mixture (334 mg, 61%) of 4 and 5.
Compounds 4 and 5 were separated by fractional crys-
tallization from 2-propanol; the first crop was 5.
Reaction of 3 with methanolic sodium methoxide.—To
a solution of 3 (10 mg, 0.025 mmol) in methanol (5 mL)
was added 1.2 M NaOMe (2 mL), and the mixture was
heated under reflux for 2 h and allowed to stand
overnight. The mixture was partitioned between AcOEt
and H2O. The organic layer was washed with dil aq
HCl and H2O, dried, and evaporated to give a 4:1
mixture (8 mg, 74%) of 7 and an unidentified product
1
as judged from the H NMR spectrum.
Reaction of 5 with methanolic sodium methoxide.—To
a solution of 5 (15 mg, 0.034 mmol) in methanol (10
mL) was added 1.8 M NaOMe (3 mL), and the mixture
was heated under reflux for 2 h. The mixture was
partitioned between AcOEt and H2O. The organic layer
was washed with dil aq HCl and H2O, dried, and
evaporated to give 15 mg (98%) of 20, which was pure
1
as judged from H NMR spectroscopy.
Physical data for 20; syrup, [h]2D5 +49° (c 1.8,
1
CHCl3); wmax 3520 (OH), 1300, 1120 cm−1 (SO2); H
NMR: l 5.28 (s, 1 H, H-1), 3.46 (broad s, 1 H,
J2,3B1.0 Hz, H-2), 2.84 (broad dd, 1 H, H-3), 4.36 (dd,
1 H, J3.4 5.9, J4,5 9.7 Hz, H-4), 4.07 (td, 1 H, J5,6a 9.7,
J5,6e 5.1 Hz, H-5), 3.77 (t, 1 H, J6a,6e 10.2 Hz, H-6a),
4.28 (dd, 1 H, H-6e), 4.17 (dd, 1 H, J3,3% 6.1, J3%,3%% 9.8
Hz, H-3%), 3.60 (broad dd, 1 H, J3,3%% 7.5 Hz, H-3%%), 5.53
(s, 1 H, PhCH), 3.37 (s, 3 H, OMe), and 2.48 (s, 3 H,
STol). Anal. Calcd for C22H26O7S·H2O: C, 58.39; H,
6.24; S, 7.09. Found: C, 57.91; H, 5.81; S, 7.12.
Physical data for 19: mp 146–148 °C (EtOH), [h]D25
−63° (c 1.0, CHCl3); wmax 1740 (OAc), 1300, 1140
cm−1 (SO2); 1H NMR: l 5.84 (d, 1 H, J1,2 5.0 Hz, H-1),
3.87 (dd, 1 H, J2,3 7.9 Hz, H-2), 2.85 (m, 1 H, H-3),
3.95 (t, 1 H, J3,4=J4,5 9.9 Hz, H-4), 3.78 (dt, 1 H, J5,6a
10.1, J5,6e 4.6 Hz, H-5), 3.60 (t, 1 H, J6a,6e 10.2 Hz,
H-6a), 4.29 (dd, 1 H, H-6e), 4.47 (dd, 1 H, J3,3% 4.0 Hz,
J3%,3%% 11.5 Hz, H-3%), 4.60 (dd, 1 H, J3,3%% 4.0 Hz, H-3%%),
5.51 (s, 1 H, PhCH), 2.43 (s, 3 H, SO2Tol), and 2.02 (s,
3 H, OAc). Anal. Calcd for C29H30O8S: C, 64.67; H,
5.61; S, 5.95. Found: C, 64.70; H, 5.68; S, 5.80.
References
1. (a) Magnus, P. D. Tetrahedron 1977, 33, 2019–2045;
(b) Simpkins, N. S. In: Sulphones in Organic Synthesis;
Tetrahedron Organic Chemistry Series Vol. 10; Pergamon
Press: Oxford, 1993; pp 183–206;
(c) Ravindran, B.; Sakthivel, K.; Suresh, C. G.; Pathak, T.
J. Org. Chem. 2000, 65, 2637–2641.
2. (a) Sakakibara, T.; Yamamoto, A.; Ishido, Y. Carbohydr.
Res. 1988, 179, 77–86;
(b) Ravindran, B.; Deshpande, S. G.; Pathak, T. Tetra-
hedron 2001, 57, 1093–1098.
3. Simpkins, N. S. In Sulphones in Organic Synthesis; Tetra-
hedron Organic Chemistry Series Vol. 10; Pergamon Press:
Oxford, 1993; pp 334–372.
4. (a) Sakakibara, T.; Takai, I.; Tachimori, Y.; Yamamoto,
A.; Ishido, Y.; Sudoh, R. Carbohydr. Res. 1987, 160,
C3–C5;
(b) Takai, I.; Yamamoto, A.; Ishido, Y.; Sakakibara, T.;
Yagi, E. Carbohydr. Res. 1991, 220, 195–207.
5. Sakakibara, T.; Namiki, S.; Matsuo, I.; Takai, I.; Ishido,
Y. A., manuscript in preparation.
Physical data for 4: mp 159–161 °C (2-PrOH), [h]D25
+19° (c 1.0, CHCl3); wmax 1740 (OAc), 1610 (O–CꢀC–
1
SO2), 1300, 1140 cm−1 (SO2); H NMR (C6D6): l 7.77
(d, 1 H, J1,3 1.7 Hz, H-1), 2.75 (m, 1 H, H-3), 3.69 (t,
1 H, J3,4=J4,5 9.5 Hz, H-4), 3.15 (dt, 1 H, J5,6a 10.4,
J5,6e 4.9 Hz, H-5), 3.26 (t, 1 H, J6a,6e 10.1 Hz, H-6a),
3.95 (dd, 1 H, H-6e), 4.63 (dd, 1 H, J3,3% 3.8 Hz, J3%,3%%
11.9 Hz, H-3%), 4.50 (dd, 1 H, J3,3%% 2.6 Hz, H-3%%), 5.15
(s, 1 H, PhCH), 1.85 (s, 3 H, SO2Tol), and 1.42 (s, 3 H,
OAc). Anal. Calcd for C23H24O7S: C, 62.15; H, 5.44; S,
7.21. Found: C, 62.38; H, 5.49; S, 7.45.
Physical data for 5: mp 220–222 °C (2-PrOH), [h]D25
+121° (c 0.5, CHCl3); wmax 1740 (OAc), 1620 (O–
1
CꢀC–SO2), 1300, 1150 cm−1 (SO2); H NMR: l 7.74
(d, 1 H, J1,3 1.7 Hz, H-1), 3.07 (m, 1 H, J3,4 5.9 Hz,
H-3), 3.81 (dd, 1 H, J4,5 9.9 Hz, H-4), 4.30–4.21 (m, 3
H, H-5, H-3%×2), 3.74 (t, 1 H, J5,6a=J6a,6e 10.5 Hz,
H-6a), 4.50 (dd, 1 H, J5,6e 5.3 Hz, H-6e), 5.52 (s, 1 H,
PhCH), 2.44 (s, 3 H, SO2Tol), and 1.83 (s, 3 H, OAc).
6. (a) Inomata, K.; Suhara, H.; Kinoshita, H.; Kotake, H.
Chem. Lett. 1988, 813–816;
(b) Barton, D. H. R.; Togo, H.; Zard, S. Z. Tetrahedron
Lett. 1985, 26, 6349–6352;