M. Y. Wani, M. R. Silva, B. Krishnakumar, S. Kumar, A. S. Al-Bogami,
F. M. Aqlan, and A. J. F. N. Sobral
Vol 000
(C=C, Ar), 758 (C–Cl); 1H-NMR (DMSO) δ (ppm):
7.98–7.45 (4H, m), 4.82 (2H, CH2, s), 4.11 (2H,
CH2, m); 1.38 (3H, CH3, t); 13C-NMR (DMSO) δ
(ppm): 162.2 (C=O) 154.5 (C=N), 137.7, 126.0, 124.8,
122.0, 118.2, 64.5, 48.2, 16.2; ESI-MS m/z:
[M + H] + 233.05.
Centre (CCDC). Any request to the CCDC for this
material should quote the full literature citation and the
reference numbers CCDC 1568228 (S2.3); 1568229
(S2.5); CCDC 1568226 (S2.6), and CCDC 1416396
(S2.7). Crystallographic details can be found in
Tables S1, S2, S3, and S4.
Ethyl
2-(5-(4-bromophenyl)-2H-tetrazol-2-yl)acetate
(S2.3). Yield 62.5%; mp 130–132°C; IR νmax (cmꢀ1):
3028 (C–H, Ar), 1722 (C=O), 1635 (C=N), 1584
(C=C, Ar), 758 (C–Br); 1H-NMR (DMSO) δ (ppm):
7.98–7.45 (4H, m), 4.82 (2H, CH2, s), 4.11 (2H,
CH2, m); 1.38 (3H, CH3, t); 13C-NMR (DMSO) δ
(ppm): 162.2 (C=O) 154.5 (C=N), 137.7, 126.0, 124.8,
122.0, 118.2, 64.5, 48.2, 16.2; ESI-MS m/z:
Acknowledgments. This work was supported by Fundação para
a Ciência e a Tecnologia (FCT) for M. Y. Wani (SFRH/BPD/
86581/2012), B. Krishnakumar, and S. Kumar (SFRH/BPD/
86507/2012). We also thank Centro de Química de Coimbra
(CQC), FCTUC, for their support. CQC is funded through
Project Pest – PEst-OE/QUI/UI0313/2014.
[M + H] + 212.01.
Ethyl 2-(5-(p-tolyl)-2H-tetrazol-2-yl)acetate (S2.4). Yield
62.5%; mp 145–147°C; IR νmax (cmꢀ1): 3028 (C–H, Ar),
1722 (C=O), 1635 (C=N), 1584 (C=C, Ar), 758 (C–C);
1H-NMR (DMSO) δ (ppm): 7.98–7.45 (4H, m), 4.82
(2H, CH2, s), 4.11 (2H, CH2, m); 1.38 (3H, CH3, t); 13C-
NMR (DMSO) δ (ppm): 165.0 (C=O) 158.5 (C=N),
133.1, 129.8, 125.0, 64.5, 55.2, 24.6, 14.5; ESI-MS m/z:
[M + H] + 247.14.
REFERENCES AND NOTES
[1] Herr, R. J. Bioorg Med Chem 2002, 10, 3379.
[2] Malik, M. A.; Wani, M. Y.; Tabati, S. A. A.; Shaikh, R. A. J
Incl Phenom Macrocycl Chem 2014, 78, 15.
[3] Popova, E. A.; Trifonov, R. E.; Ostrovskii, V. A. ARKIVOC
2012, I, 45.
[4] Wei, C. X.; Bian, M.; Gong, G. H. Molecules 2015, 27,
5528.
[5] Myznikov, L. V.; Hrabalek, A.; Koldobskii, G. I. Chem
Heterocycl Compd 2007, 43, 1.
[6] Sarvary, A.; Maleki, A. Mol Divers 2015, 19, 189.
[7] Najmeh, N.; Soghra, F.; Maryam, I. Tetrahedron Lett 2015,
56, 739.
[8] Satyanand, K.; Shristy, D.; Nisha, S.; Satish, K. A. Tetrahe-
dron Lett 2014, 55, 6034.
[9] Fariba, R.; Ali, D.; Behrouz, N. J Fluorine Chem 2014, 166,
84.
[10] Rama, V.; Kanagaraj, K.; Pitchumani, K. J Org Chem 2011,
76, 9090.
[11] Madhusudana, R. M. B. G.; Pasha, M. A. J Chem Sci 2011,
123, 75.
[12] Demko, Z. P.; Sharpless, K. B. J Org Chem 2001, 66, 7945.
[13] Ali, Z. F.; Pamela, P.; Charles, L. L.; Charles, A. E. Molecules
2010, 15, 8400.
[14] Mona, H.-S.; Sepideh, N.-D. C R Chim 2014, 17, 1007.
[15] Sajadi, S. M.; Maryam, N.; Shahram, B. J Nat Sci Res 2011, 1,
10.
[16] Pavnesh, M.; Chiranjeev, S.; Satyanand, K.; Satish, K. A.
J. Mol. Cat. A: Chem. 2014, 392, 150.
Ethyl
2-(5-(4-methoxyphenyl)-2H-tetrazol-2-yl)acetate
(S2.5). Yield 62.5%; mp 132–134°C; IR νmax (cmꢀ1):
3028 (C–H, Ar), 1722 (C=O), 1635 (C=N), 1584 (C=C,
1
Ar); H-NMR (DMSO) δ (ppm): 7.98–7.45 (4H, m), 4.82
(2H, CH2, s), 4.11 (2H, CH2, m); 1.38 (3H, CH3, t);
13C-NMR (DMSO) δ (ppm): 166.0 (C=O) 162.5 (C=N),
159.1 (C-O), 137.7, 124.8, 122.0, 64.5, 55.0, 50.2, 14.5;
ESI-MS m/z: [M + H] + 263.10.
Diethyl-1,4-phenylenebis (methanylylidene)-bis(hydrazine-
2,1-diylidene)-diacetate (S2.6).
Yield 62.5%; mp 158–
160°C; IR νmax (cmꢀ1): 3028 (C–H, Ar), 1722 (C=O),
1635 (C=N), 1584 (C=C, Ar); 1H-NMR (DMSO) δ
(ppm): 8.45 (s, 1H, CH), 8.38 (s, 1H, CH), 8.25 (s, 2H,
CH) 8.00 (s, 4H, Ar), 4.82 (2H, CH2, s), 4.11 (2H, CH2,
m); 1.38 (3H, CH3, t); 13C-NMR (DMSO) δ (ppm):
165.0 (C=O) 154.5, 149.5 (C=N), 138.7, 129.8, 62.5,
13.2; ESI-MS m/z: [M + H] + 331.15.
X-ray crystallography. For the determination of the
crystal structure by X-ray diffraction, a crystal of the
aforementioned compounds were glued separately to a
[17] Zhang, J.; Meng, L.-G.; Li, P.; Wang, L. RSC Adv 2013, 3,
6807.
[18] Huff, L.; Henry, R. A. J Med Chem 1970, 13, 777.
[19] Lisakovaa, A. D.; Ryabukhinb, D. S.; Trifonova, R. E.;
Ostrovskiia, V. A.; Vasilyev, A. V. Tetrahedron Lett 2015, 56, 7020.
[20] Einberg, F. J Org Chem 1970, 35, 3978.
[21] Huisgen, R. Angew Chem Int Ed Engl 1963, 2, 633.
[22] Benson, F. R. In Heterocyclic CompoundsElderfield, R. Ed.;
Wiley: New York, NY, London, Sydney, 1967; Vol 8.
[23] Baldwin, J.; Hong, S. J Chem Soc Chem Commun 1967
1136.
[24] Hong, S.; Baldwin, J. Tetrahedron 1968, 24, 3787.
[25] Chattopadhyay, T.; Banu, K. S.; Chattopadhyay, S.;
Banerjee, A.; Mondal, S.; Suresh, E.; Das, D. Inorg Chem Commun
2009, 12, 26.
glass fiber and mounted on
a Bruker APEX II
diffractometer. Diffraction data were collected at room
temperature 293(2) K using graphite monochromated
MoKα (λ = 0.71073 Å). Absorption corrections were
made using SADABS [28]. The structures were solved
by direct methods using SHELXS-9725 and refined
anisotropically (non-H atoms) by full-matrix least
squares on F2 using the SHELXL-97 program [29].
PLATON [30] was used to analyze the structures and
for figure plotting. Atomic coordinates, thermal
parameters, and bond lengths and angles have been
deposited at the Cambridge Crystallographic Data
[26] Velmurugan, R.; Krishnakumar, B.; Rajendra, K.;
Swaminathan, M. Arab J Chem 2012, 5, 447.
[27] Sobana, N.; Muruganadham, M.; Swaminathan, M. J Mol Cat
A: Chem 2006, 258, 124.
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet