10.1002/anie.202009490
Angewandte Chemie International Edition
COMMUNICATION
[15] a) F. Leroux, P. Jeschke, M. Schlosser, Chem. Rev. 2005, 105, 827; b)
P. Jeschke, E. Baston, F. R. Leroux, Mini-Rev. Med. Chem. 2007, 7,
1027; c) B. Manteau, S. Pazenok, J. P. Vors, F. R. Leroux, J. Fluorine
Chem. 2010, 131, 140; d) T. Liang, C. N. Neumann, T. Ritter, Angew.
Chem. Int. Ed. 2013, 52, 8214; Angew. Chem. 2013, 125, 8372; e) C. Ni,
J. Hu, Synthesis 2014, 46, 842; f) A. Tlili, F. Toulgoat, T. Billard, Angew.
Chem. Int. Ed. 2016, 55, 11726; Angew. Chem. 2016, 128, 11900; g) T.
Besset, P. Jubault, X. Pannecoucke, T. Poisson, Org. Chem. Front. 2016,
3, 1004; h) K. N. Lee, J. W. Lee, M.-Y. Ngai, Tetrahedron 2018, 74, 7127;
i) X. Zhang, P. Tang, Sci. China Chem. 2019, 62, 525; j) J. W. Lee, K. N.
Lee, M. Y. Ngai, Angew. Chem. Int. Ed. 2019, 58, 11171; Angew. Chem.
2019, 131, 11289; k) L. Gregory, P. Armen, R. L. Frederic, Curr. Top.
Med. Chem. 2014, 14, 941; l) J. W. Lee, K. N. Lee, M. Y. Ngai, in
Emerging Fluorinated Motifs, 10.1002/9783527824342.ch8 (Eds.: D.
Cahard, J. A. Ma), Wiley‐VCH Verlag GmbH & Co. KGaA., 2020, pp. 225.
[16] a) D. Federsel, A. Herrmann, D. Christen, S. Sander, H. Willner, H.
Oberhammer, J. Mol. Struct. 2001, 567, 127; b) K. Müller, Chimia 2014,
68, 356; c) Q. A. Huchet, N. Trapp, B. Kuhn, B. Wagner, H. Fischer, N.
A. Kratochwil, E. M. Carreira, K. Müller, J. Fluorine Chem. 2017, 198, 34.
[17] M. A. McClinton, D. A. McClinton, Tetrahedron 1992, 48, 6555.
[18] a) J. W. Lee, D. N. Spiegowski, M. Y. Ngai, Chem. Sci. 2017, 8, 6066; b)
J. Yang, M. Jiang, Y. Jin, H. Yang, H. Fu, Org. Lett. 2017, 19, 2758; c)
W. J. Zheng, C. A. Morales-Rivera, J. W. Lee, P. Liu, M. Y. Ngai, Angew.
Chem. Int. Ed. 2018, 57, 9645; Angew. Chem. 2018, 130, 9793; d) B. J.
Jelier, P. F. Tripet, E. Pietrasiak, I. Franzoni, G. Jeschke, A. Togni,
Angew. Chem. Int. Ed. 2018, 57, 13784; Angew. Chem. 2018, 130, 9793;
e) W. J. Zheng, J. W. Lee, C. A. Morales-Rivera, P. Liu, M. Y. Ngai,
Angew. Chem. Int. Ed. 2018, 57, 13795; Angew. Chem. 2018, 130,
13991; f) S. Yang, M. Chen, p. Tang, Angew. Chem. Int. Ed. 2019, 58,
7840; Angew. Chem. 2018, 131, 7922; g) J. W. Lee, W. J. Zheng, C. A.
Morales-Rivera, P. Liu, M. Y. Ngai, Chem. Sci. 2019, 10, 3217.
[19] a) C. Huang, T. Liang, S. Harada, E. Lee, T. Ritter, J. Am. Chem. Soc.
2011, 133, 13308; b) J.-B. Liu, C. Chen, L. Chu, Z.-H. Chen, X.-H. Xu,
F.-L. Qing, Angew. Chem. Int. Ed. 2015, 54, 11839; Angew. Chem. 2015,
127, 12005; c) M. Zhou, C. F. Ni, Z. B. He, J. B. Hu, Org. Lett. 2016, 18,
3754; d) Q. W. Zhang, A. T. Brusoe, V. Mascitti, K. D. Hesp, D. C.
Blakemore, J. T. Kohrt, J. F. Hartwig, Angew. Chem. Int. Ed. 2016, 55,
9758; Angew. Chem. 2016, 128, 9910; e) Q.-W. Zhang, J. F. Hartwig,
Chem. Commun. 2018, 54, 10124; f) M. Zhou, C. Ni, Y. Zeng, J. Hu, J.
Am. Chem. Soc. 2018, 140, 6801; g) Y.-M. Yang, J.-F. Yao, W. Yan, Z.
Luo, Z.-Y. Tang, Org. Lett. 2019, 21, 8003; h) M. Yoritate, A. T.
Londregan, Y. Lian, J. F. Hartwig, J. Org. Chem. 2019, 84, 15767; i) Z.
Deng, M. Zhao, F. Wang, P. Tang, Nat. Commun. 2020, 11, 2569.
9th July, 2020)
also thank reviewers for their insightful suggestions and
comments.
Keywords: TEMPO catalysis • difluoromethoxylation •
trifluoromethoxylation • radical • arenes
[1]
[2]
a) E. E. Voest, E. v. Faassen, J. J. M. Marx, Free Radical Bio. Med. 1993,
15, 589; b) H. Fischer, Chem. Rev. 2001, 101, 3581; c) A. Studer, Chem.
- Eur. J. 2001, 7, 1159; d) A. Studer, Chem. Soc. Rev. 2004, 33, 267; e)
J. E. Nutting, M. Rafiee, S. S. Stahl, Chem. Rev. 2018, 118, 4834; f)
Hongfeng Zhuang, Heng Li, Shuai Zhang, Yanbin Yin, Feng Han, Chao
Sun, C. Miao, Chin. Chem. Lett. 2020, 31, 39; g) D. Leifert, A. Studer,
Angew. Chem. Int. Ed. 2020, 59, 74; Angew. Chem. 2020, 132, 74.
a) J. E. Babiarz, G. T. Cunkle, A. D. DeBellis, D. Eveland, S. D. Pastor,
S. P. Shum, J. Org. Chem. 2002, 67, 6831; b) S. Coseri, K. U. Ingold,
Org. Lett. 2004, 6, 1641; c) J.-L. Zhan, M.-W. Wu, D. Wei, B.-Y. Wei, Y.
Jiang, W. Yu, B. Han, ACS Catal. 2019, 9, 4179.
[3]
[4]
a) J. M. Hoover, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 16901; b) T.
Kano, F. Shirozu, K. Maruoka, J. Am. Chem. Soc. 2013, 135, 18036; c)
A. Badalyan, S. S. Stahl, Nature 2016, 535, 406.
a) E. A. Mader, A. S. Larsen, J. M. Mayer, J. Am. Chem. Soc. 2004, 126,
8066; b) T. Gunasekara, G. P. Abramo, A. Hansen, H. Neugebauer, M.
Bursch, S. Grimme, J. R. Norton, J. Am. Chem. Soc. 2019, 141, 1882.
C. T. Saouma, W. Kaminsky, J. M. Mayer, J. Am. Chem. Soc. 2012, 134,
7293.
[5]
[6]
a) T. Iwamoto, H. Masuda, S. Ishida, C. Kabuto, M. Kira, J. Am. Chem.
Soc. 2003, 125, 9300; b) J. L. Pitters, R. A. Wolkow, J. Am. Chem. Soc.
2005, 127, 48; c) P. H. Fuller, J.-W. Kim, S. R. Chemler, J. Am. Chem.
Soc. 2008, 130, 17638.
[7]
a) M. F. Semmelhack, C. R. Schmid, D. A. Cortes, C. S. Chou, J. Am.
Chem. Soc. 1984, 106, 3374; b) R. Liu, X. Liang, C. Dong, X. Hu, J. Am.
Chem. Soc. 2004, 126, 4112; c) J. M. Bobbitt, C. BrüCkner, N. Merbouh,
Org. React. 2004, 103; d) M. Shibuya, M. Tomizawa, I. Suzuki, Y.
Iwabuchi, J. Am. Chem. Soc. 2006, 128, 8412; e) Y.-X. Chen, L.-F. Qian,
W. Zhang, B. Han, Angew. Chem. Int. Ed. 2008, 47, 9330; ; Angew.
Chem. 2008, 120, 9470; f) S. Maity, S. Manna, S. Rana, T. Naveen, A.
Mallick, D. Maiti, J. Am. Chem. Soc. 2013, 135, 3355; g) X. Xie, S. S.
Stahl, J. Am. Chem. Soc. 2015, 137, 3767; h) D. Gangaprasad, J. Paul
Raj, T. Kiranmye, K. Karthikeyan, J. Elangovan, Eur. J. Org. Chem. 2016,
2016, 5642; i) X.-Q. Hu, J. Chen, J.-R. Chen, D.-M. Yan, W.-J. Xiao,
Chem. - Eur. J. 2016, 22, 14141.
[8]
[9]
Y. Wu, H. Yi, A. Lei, ACS Catal. 2018, 8, 1192.
a) J. C. Siu, G. S. Sauer, A. Saha, R. L. Macey, N. Fu, T. Chauviré, K.
M. Lancaster, S. Lin, J. Am. Chem. Soc. 2018, 140, 12511; b) J. C. Siu,
J. B. Parry, S. Lin, J. Am. Chem. Soc. 2019, 141, 2825.
[21] K. Sakuratani, H. Togo, Synthesis 2003, 1, 21.
[22] Resonance stabilization energy of TEMPO is 29 kcal/mol, see: I.
Novak, L. J. Harrison, B. Kovač, L. M. Pratt, J. Org. Chem. 2004, 69,
7628.
[10] a) D. P. Hickey, M. S. McCammant, F. Giroud, M. S. Sigman, S. D.
Minteer, J. Am. Chem. Soc. 2014, 136, 15917; b) D. P. Hickey, R. D.
Milton, D. Chen, M. S. Sigman, S. D. Minteer, ACS Catal. 2015, 5, 5519.
[11] a) M. Rafiee, Z. M. Konz, M. D. Graaf, H. F. Koolman, S. S. Stahl, ACS
Catal. 2018, 8, 6738; b) M. Rafiee, M. Alherech, S. D. Karlen, S. S. Stahl,
J. Am. Chem. Soc. 2019, 141, 15266; c) F. Wang, S. S. Stahl, Acc. Chem.
Res. 2020, 53, 561.
[23] A. Nilsen, R. Braslau, J. Polym. Sci. A Polym. Chem. 2006, 44, 697.
[24] a) V. G. Mairanovsky, Angew. Chem. Int. Ed. 1976, 15, 281; Angew.
Chem. 1976, 88, 283; b) W. Schmidt, E. Steckhan, J. Electroanal. Chem.
Interf. Electrochem. 1978, 89, 215; c) E. Steckhan, Angew. Chem. Int.
Ed. 1986, 25, 683; Angew. Chem. 1986, 98, 681; d) M. Majek, A. Jacobi
von Wangelin, Acc. Chem. Res. 2016, 49, 2316.
[12] a) H. G. Cha, K.-S. Choi, Nat. Chem. 2015, 7, 328; b) X.-Y. Qian, S.-Q.
Li, J. Song, H.-C. Xu, ACS Catal. 2017, 7, 2730; c) H. B. Zhao, P. Xu, J.
Song, H. C. Xu, Angew. Chem. Int. Ed. 2018, 57, 15153; Angew. Chem.
2018, 130, 15373; d) A. C. Cardiel, B. J. Taitt, K.-S. Choi, ACS Sustain.
Chem. Eng. 2019, 7, 11138.
[25] K. Bahtia, R. H. Schuler, J. Phys. Chem. 1974, 78, 2335.
[26] The addition of electrophilic O-centered radical to arenes is faster than
hydrogen atom abstraction, see: a) M. P. DeMatteo, J. S. Poole, X. Shi,
R. Sachdeva, P. G. Hatcher, C. M. Hadad, M. S. Platz, J. Am. Chem.
Soc. 2005, 127, 7094; b) J. S. Poole, X. Shi, C. M. Hadad, M. S. Platz, J.
Phys. Chem. A, 2005, 109, 2547.
[13] In a redox neutral reaction, the substrate or substrates undergo both
single-electron oxidation and single-electron reduction at different points
of the catalytic cycle. For examples, see: a) N. Z. Burns, P. S. Baran, R.
W. Hoffmann, Angew. Chem. Int. Ed. 2009, 48, 2854; Angew. Chem.
2009, 121, 2896; b) T. Newhouse, P. S. Baran, R. W. Hoffmann, Chem.
Soc. Rev. 2009, 38, 3010; c) L. Ma, W. Chen, D. Seidel, J. Am. Chem.
Soc. 2012, 134, 15305; d) C. K. Prier, D. A. Rankic, D. W. C. MacMillan,
Chem. Rev. 2013, 113, 5322.
[27] a) D. A. Nagib, D. W. MacMillan, Nature 2011, 480, 224; b) T. Cernak, K.
D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev.
2016, 45, 546.
[28] J. Burés, Angew. Chem. Int. Ed. 2016, 55, 2028; Angew. Chem. 2016,
128, 2068.
[29] a) M. Shibuya, M. Tomizawa, Y. Iwabuchi, J. Org. Chem. 2008, 73, 4750;
b) N. A. Giffin, M. Makramalla, A. D. Hendsbee, K. N. Robertson, C.
[14] A.-F. Voica, A. Mendoza, W. R. Gutekunst, J. O. Fraga, P. S. Baran, Nat.
Chem. 2012, 4, 629.
This article is protected by copyright. All rights reserved.