3
This work was supported by National Natural Science
21
22
38 c
99 c
Foundation of China (21372044), Research Fund for the Doctoral
Program of Higher Education of China (No. 20123514110003),
the SRF for ROCS, SEM, China (2012-1707), and Fuzhou
University (022494).
References and notes
a Reaction conditions: 1 (0.60 mmol), 2 (0.50 mmol), NaOt-Bu (0.50 mmol),
DMF (5.0 mL), under N2 atmosphere. The E/Z configuration ratios of
products were determined by 19F NMR.
1. Tressaud, A.; Haufe, G. Fluorine and Health: Molecular
Imaging, Biomedical Materials and Pharmaceuticals;
Elsevier: London, 2008.
2. Ojima, I.; Editor Fluorine In Medicinal Chemistry And
Chemical Biology; John Wiley & Sons Ltd., 2009.
3. Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.;
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H.
Chem. Rev. 2013, 114, 2432.
4. Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115,
731.
5. Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed.
2013, 52, 8214.
6. Besset, T.; Schneider, C.; Cahard, D. Angew. Chem. Int. Ed.
2012, 51, 5048.
7. Jin, Z.; Hammond, G. B.; Xu, B. Aldrichim. Acta 2012, 45,
67.
8. Ye, Y.; Sanford, M. S. Synlett 2012, 23, 2005.
9. Chen, P.; Liu, G. Synthesis 2013, 45, 2919.
10. Xu, J.; Liu, X.; Fu, Y. Tetrahedron Lett. 2014, 55, 585.
11. Manteau, B.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. J.
Fluorine Chem. 2010, 131, 140.
b Isolated yields.
c
The yield was determined by 19F NMR spectroscopy with PhOCF3 as
internal standard.
The stereochemistry of trifluoroethyl vinyl ethers 3 was
1
characterized by the H NMR coupling constant value of the
olefinic protons (trans configuration: J = 12.612.9 Hz; cis
configuration:
J
=
7.2 Hz).26-29 In addition, the E/Z
stereochemistry of the trifluoroethyl vinyl ethers bond
corresponds to the alkenyl bromide substrates (Entries 115).
The complete retention of the double-bond stereochemistry after
reaction indicates that the trifluoroethoxylation reaction could
proceeds via an oxidative addition−reductive elimination
12. Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
13. Wang, H.; Vicic, D. A. Synlett 2013, 24, 1887.
14. Begue, J.-P.; Bonnet-Delpon, D. Bioorganic and Medicinal
Chemistry of Fluorine; Wiley: Hoboken, 2008.
15. Irurre Jr, J.; Casas, J.; Messeguer, A. Bioorg. Med. Chem.
Lett. 1993, 3, 179.
16. Camps, F.; Coll, J.; Messeguer, A.; Pericàs, M. A. Synthesis
1980, 727.
17. Hine, J.; Ghirardelli, R. J. Org. Chem. 1958, 23, 1550.
18. Nakai, T.; Tanaka, K.; Ishikawa, N. J. Fluorine Chem. 1977,
9, 89.
Scheme 2. Plausible reaction pathway leading to the
trifluoroethyl vinyl ethers.
19. Gupton, J. T.; Idoux, J. P.; Colon, C.; Rampi, R. Synth.
Commun. 1982, 12, 695.
20. Idoux, J. P.; Gupton, J. T.; McCurry, C. K.; Crews, A. D.;
Jurss, C. D.; Colon, C.; Rampi, R. C. J. Org. Chem. 1983,
48, 3771.
To highlight the scalability and practicability of our synthesis,
the trifluoroethoxylation reaction was performed on a gram
scale. Using 1.10 g (6.0 mmol) of -bromostyrene 2a as the
substrate, the trifluoroethoxylated product 3a was obtained in
81% yield (Scheme 3).
21. Vuluga, D.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Eur.
J. Org. Chem. 2009, 3513.
22. Rangarajan, T. M.; Singh, R.; Brahma, R.; Devi, K.; Singh,
R. P.; Singh, R. P.; Prasad, A. K. Chem.-Eur. J. 2014, 20,
14218.
23. Rangarajan, T. M.; Devi, K.; Ayushee; Prasad, A. K.; Pal
Singh, R. Tetrahedron 2015, 71, 8307.
24. Huang, R.; Huang, Y.; Lin, X.; Rong, M.; Weng, Z. Angew.
Chem. Int. Ed. 2015, 54, 5736. Corrigendum: 2015, 54,
8022.
Scheme 3. Scalability of the trifluoroethoxylation of 2a.
25. Huang, Y.; Huang, R.; Weng, Z. Synlett 2015, 26, 2327.
26. Zhang, C.-P.; Vicic, D. A. Chem. Asian J. 2012, 7, 1756.
27. Shao, X.; Wang, X.; Yang, T.; Lu, L.; Shen, Q. Angew.
Chem. Int. Ed. 2013, 52, 3457.
28. Rueping, M.; Tolstoluzhsky, N.; Nikolaienko, P. Chem.-Eur.
J. 2013, 19, 14043.
In conclusion, a convenient synthetic strategy to prepare
trifluoroethyl
trifluoroethoxylation
vinyl
ethers
reactions
was
of
explored
copper
by
reagent
the
[(phen)2Cu][OCH2CF3] with vinyl bromides. The strategy
afforded the trifluoroethyl vinyl ethers in good yields.
Additionally, the reaction tolerated a variety of substituents at the
aryl moiety of vinyl halides and is amenable to being carried out
on gram scales.
29. Huang, Y.; Ding, J.; Wu, C.; Zheng, H.; Weng, Z. J. Org.
Chem. 2015, 80, 2912.
Acknowledgments