Please do not adjust margins
Organic & Biomolecular Chemistry
Page 5 of 5
DOI: 10.1039/C8OB00376A
Journal Name
ARTICLE
11 C. E. Storniolo, P. Quifer-Rada, R. M. Lamuela-Raventos and J.
J. Moreno, Food Funct., 2014, , 2137-2144.
12 S. Ince, D. A. Acaroz, O. Neuwirth, H. H. Demirel, B. Denk, I.
The chemical structure of the purified products was
identified by the analysis of 1H NMR, 13C NMR and
5
Heteronuclear
Multiple-Bond
Correlation
(HMBC)
-O-β-
Kucukkurt and R. Turkmen, Food Chem. Toxicol., 2014, 72
147-153.
,
spectroscopy (polydatin: Fig. S6–S8; resveratrol-4
′
glucoside: Fig. S9–S11, Table S2). All NMR data were recorded
in dimethyl sulfoxide–d6 on a 400-MHz NMR spectrometer
(Bruker, Rheinstetten, Germany).
13 X. M. Wang, R. Song, Y. Y. Chen, M. Zhao and K. S. Zhao,
Expert Opin. Inv. Drug, 2013, 22, 169-179.
14 B. Yu, J. Sun and X. Yang, Acc. Chem. Res., 2012, 45, 1227-
1236.
15 Z. Zhang, B. Yu and R. R. Schmidt, Synthesis, 2006, 1301-1306.
Homology modeling
16 X. M. Zhu and R. R. Schmidt, Angew. Chem. Int. Ed., 2009, 48
,
Homology modeling was performed with the SWISS-MODEL
server34, 35 using the reported crystal structure (PDB No. 2IYA)
of glycosyltransferase OleI25 from Streptomyces antibioticus as
a template. The resulting model was superimposed onto the
crystal structure of the template OleI in complex with
substrate oleandomycin. The residues with 3.5 Å from
substrate amount to the resveratrol in homology model
UGTBL1, were selected for the mutagenesis in the first round of
screening. The amino acid residue that significantly affected
the regioselectivity of UGTBL1 was selected for saturation
mutagenesis in the second round of screening.
1900-1934.
17 J. Wang, G. Li and M. T. Reetz, Chem. Commun., 2017, 53
3916-3928.
18 D. Donnez, P. Jeandet, C. Clément and E. Courot, Trends
Biotechnol., 2009, 27, 706-713.
19 D. Sato, N. Shimizu, Y. Shimizu, M. Akagi, Y. Eshita, S.-i. Ozaki,
N. Nakajima, K. Ishihara, N. Masuoka and H. Hamada, Biosci.
Biotechnol. Biochem., 2014, 78, 1123-1128.
20 R. P. Pandey, P. Parajuli, J. Y. Shin, J. Lee, S. Lee, Y.-S. Hong, Y.
I. Park, J. S. Kim and J. K. Sohng, Appl. Environ. Microbiol.,
2014, 80, 7235-7243.
,
21 M. E. Dirks-Hofmeister, T. Verhaeghe, K. De Winter and T.
Desmet, Angew. Chem., 2015, 127, 9421-9424.
22 J. B. McArthur and X. Chen, Biochem. Soc. T., 2016, 44, 129-
142.
23 J. Schmid, D. Heider, N. J. Wendel, N. Sperl and V. Sieber,
Front. Microbiol., 2016, 7, 182.
Conflicts of interest
There are no conflicts to declare.
24 Y. Zhuang, G. Yang, X. Chen, Q. Liu, X. Zhang, Z. Deng and Y.
Feng, Metab. Eng., 2017, 42, 25-32.
25 D. N. Bolam, S. Roberts, M. R. Proctor, J. P. Turkenburg, E. J.
Dodson, C. Martinez-Fleites, M. Yang, B. G. Davis, G. J. Davies
and H. J. Gilbert, Proc. Natl. Acad. Sci. USA, 2007, 104, 5336-
5341.
26 B. Fan, T. Chen, S. Zhang, B. Wu and B. He, Sci. Rep., 2017, 7,
463.
27 S. Zhang, Z. Zhou, Z. Yao and B. He, Biochem. Eng. J., 2013,
71, 105-110.
28 S. A. Osmani, S. Bak and B. L. Moller, Phytochemistry, 2009,
70, 325-347.
29 G. J. Williams, C. Zhang and J. S. Thorson, Nat. Chem. Biol.,
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21506099 and 81673321). We also
acknowledge the fund sponsored by the Program for
Innovative Research Team in Universities of Jiangsu Province
(2015) and the Jiangsu Synergetic Innovation Center for
Advanced Bio-Manufacture.
2007, 3, 657-662.
30 R. W. Gantt, R. D. Goff, G. J. Williams and J. S. Thorson,
Angew. Chem. Int. Ed., 2008, 47, 8889-8892.
31 D. Hoffmeister, B. Wilkinson, G. Foster, P. J. Sidebottom, K.
Notes and references
1
2
3
4
J. A. Baur and D. A. Sinclair, Nat. Rev. Drug Discov., 2006, 5,
493-506.
L. Lu, S. Zhu, H. Zhang, F. Li and S. Zhang, RSC Adv., 2015, 5,
14114-14122.
Ichinose and A. Bechthold, Chem. Biol., 2002, 9, 287-295.
32 X.-Z. He, X. Wang and R. A. Dixon, J. Biol. Chem., 2006, 281
34441-34447.
,
33 J. Sanchis, L. Fernández, J. D. Carballeira, J. Drone, Y.
Gumulya, H. Höbenreich, D. Kahakeaw, S. Kille, R. Lohmer, J.
J.-P. Peyralans, J. Podtetenieff, S. Prasad, P. Soni, A. Taglieber,
S. Wu, F. E. Zilly and M. T. Reetz, Appl. Microbiol. Biotechnol.,
2008, 81, 387-397.
34 K. Arnold, L. Bordoli, J. Kopp and T. Schwede, Bioinformatics,
2006, 22, 195-201.
35 N. Guex, M. C. Peitsch and T. Schwede, Electrophoresis,
2009, 30, S162-S173.
Y. Qiao, J. Sun, S. Xia, X. Tang, Y. Shi and G. Le, Food Funct.,
2014, , 1241-1249.
5
A. Gracia, J. Miranda, A. Fernandez-Quintela, I. Eseberri, M.
Garcia-Lacarte, F. I. Milagro, J. A. Martinez, L. Aguirre and M.
P. Portillo, Food Funct., 2016,
J. Walker, K. Schueller, L.-M. Schaefer, M. Pignitter, L.
Esefelder and V. Somoza, Food Funct., 2014, , 74-84.
D. Vergara, P. Simeone, D. Toraldo, P. Del Boccio, V. Vergaro,
S. Leporatti, D. Pieragostino, A. Tinelli, S. De Domenico, S.
Alberti, A. Urbani, M. Salzet, A. Santino and M. Maffia, Mol.
7, 1680-1688.
5
6
5
Biosyst., 2012, 8, 1078-1087.
7
L. Biasutto, E. Marotta, A. Bradaschia, M. Fallica, A. Mattarei,
S. Garbisa, M. Zoratti and C. Paradisi, Bioorg. Med. Chem.
Lett., 2009, 19, 6721-6724.
8
9
A. Lepak, A. Gutmann, S. T. Kulmer and B. Nidetzky,
ChemBioChem, 2015, 16, 1870-1874.
I. Medina, D. Alcantara, M. J. Gonzalez, P. Torres, R. Lucas, J.
Roque, F. J. Plou and J. C. Morales, J. Agr. Food Chem., 2010,
58, 9778-9786.
10 H. Wen, X. H. Gao and J. H. Qin, Integr. Biol., 2014, 6, 35-43.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins