Page 5 of 7
ACS Catalysis
(2)
Patil, S. A.; Patil, R.; Patil, S. A. Recent Developments in
(10)
Liu, Y.; Chen, L.; Liu, Y.; Liu, P.; Dai, B. Synthesis of 3-
Biological Activities of Indanones. Eur. J. Med. Chem. 2017, 138,
182–198.
Aryl-1-Indanones via CsF-Promoted Coupling of Arylboronic Ac-
ids with N -Tosylhydrazones. J. Chem. Res. 2018, 42, 40–43.
1
2
3
4
5
(3)
Kerr, D. J.; Hamel, E.; Jung, M. K.; Flynn, B. L. The Con-
(11)
Yu, L.; Han, M.; Luan, J.; Xu, L.; Ding, Y.; Xu, Q.
cise Synthesis of Chalcone, Indanone and Indenone Analogues of
Combretastatin A4. Bioorg. Med. Chem. 2007, 15, 3290–3298.
(4)
Ca(OH)2-Catalyzed Condensation of Aldehydes with Methyl Ke-
tones in Dilute Aqueous Ethanol: A Comprehensive Access to α,β-
Unsaturated Ketones. Sci. Rep. 2016, 6, 30432.
(a) Sartori, G.; Maggi’, R.; Bigi’, F.; Porta’, C.; Taob, X.;
6
Bernardi’, G. L.; Ianelli’, S.; Nardelli’, M. Selective Synthesis of 1-
Indanones via Tandem Knoevenagel Condensation-Cycloalkyla-
tion of P-Dicarbonyl Compounds and Aldehydes. Tetrahedron
1995, 51, 12179–12192. (b) Kangani, C. O.; Day, B. W. Mild, Efficient
Friedel−Crafts Acylations from Carboxylic Acids Using Cyanuric
Chloride and AlCl3. Org. Lett. 2008, 10, 2645–2648. (c) Chassaing,
S.; Kumarraja, M.; Pale, P.; Sommer, J. Zeolite-Directed Cascade
Reactions:ꢀ Cycliacyarylation versus Decarboxyarylation of α,β-
Unsaturated Carboxylic Acids. Org Lett. 2007, 9, 3889–3892. (d)
Yin, W.; Ma, Y.; Xu, J.; Zhao, Y. Microwave-Assisted One-Pot Syn-
thesis of 1-Indanones from Arenes and α,β-Unsaturated Acyl
Chlorides. J. Org. Chem. 2006, 71, 4312–4315. (e) Ramulu, B. V.; Ni-
harika, P.; Satyanarayana, G. Superacid-Promoted Dual C–C Bond
Formation by Friedel–Crafts Alkylation/Acylation of Cinnamate
Esters: Synthesis of Indanones. Synthesis 2015, 47, 1255–1268. (f)
Prakash, G. K. S.; Yan, P. Superacidic Trifluoromethanesulfonic
Acid-Induced Cycli-Acyalkylation of Aromatics. Catal. Lett. 2003,
87, 109–112. (g) Ramulu, B. V.; Reddy, A. G. K.; Satyanarayana, G.
Superacid-Promoted Dual C–C Bond Formation by Friedel–Crafts
Alkylation and Acylation of Ethyl Cinnamates: Synthesis of Inda-
nones. Synlett. 2013, 24, 868–872. (h) Sani Souna Sido, A.; Chas-
saing, S.; Kumarraja, M.; Pale, P.; Sommer, J. Solvent-Dependent
Behavior of Arylvinylketones in HUSY-Zeolite: A Green Alterna-
tive to Liquid Superacid Medium. Tetrahedron Lett. 2007, 48,
5911–5914.
(12)
(a) Chen, G.; Zhuang, Z.; Li, G.-C.; Saint-Denis, T. G.;
7
8
9
Hsiao, Y.; Joe, C. L.; Yu, J.-Q. Ligand-Enabled β-C-H Arylation of
α-Amino Acids Without Installing Exogenous Directing Groups.
Angew. Chem. Int. Ed. 2017, 56, 1506–1509. (b) Liu, T.; Qiao, J. X.;
Poss, M. A.; Yu, J.-Q. Palladium(II)-Catalyzed Site-Selective
C(Sp3)−H Alkynylation of Oligopeptides: A Linchpin Approach
for Oligopeptide-Drug Conjugation. Angew. Chem. Int. Ed. 2017,
56, 10924–10927.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(13)
Gong, H.; Zeng, H.; Zhou, F.; Li, C.-J. Rhodium(I)-Cata-
lyzed Regiospecific Dimerization of Aromatic Acids: Two Direct
C–H Bond Activations in Water. Angew. Chem. Int. Ed. 2015, 54,
5718–5721.
(14)
(a) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. Two Meth-
ods for Direct Ortho -Arylation of Benzoic Acids. J. Am. Chem.
Soc. 2007, 129, 9879–9884. (b) Nguyen, T. T.; Grigorjeva, L.; Dau-
gulis, O. Cobalt-Catalyzed Coupling of Benzoic Acid C−H Bonds
with Alkynes, Styrenes, and 1,3-Dienes. Angew. Chem. Int. Ed.
2018, 57, 1688–1691.
(15)
(a) Simonetti, M.; Cannas, D. M.; Panigrahi, A.; Kujawa,
S.; Kryjewski, M.; Xie, P.; Larrosa, I. Ruthenium-Catalyzed C−H
Arylation of Benzoic Acids and Indole Carboxylic Acids with Aryl
Halides. Chem. – Eur. J. 2017, 23, 549–553. (b) Font, M.; Quibell, J.
M.; Perry, G. J. P.; Larrosa, I. The Use of Carboxylic Acids as Trace-
less Directing Groups for Regioselective C–H Bond Functionalisa-
tion. Chem. Commun. 2017, 53, 5584–5597.
(5)
(a) Tiwari, P. K.; Aidhen, I. S. A Weinreb Amide Based
(16)
(a) Kumar, N. Y. P.; Rogge, T.; Yetra, S. R.; Bechtoldt, A.;
Building Block for Convenient Access to β,β-Diarylacroleins: Syn-
thesis of 3-Arylindanones. Eur. J. Org. Chem. 2016, 2637–2646. (b)
Rajesh, N.; Prajapati, D. Indium-Catalyzed, Novel Route to β,β-
Disubstituted Indanones via Tandem Nakamura Addition–hy-
droarylation–decarboxylation Sequence. Chem. Commun. 2015,
51, 3347–3350.
Clot, E.; Ackermann, L. Mild Decarboxylative C−H Alkylation:
Computational Insights for Solvent-Robust Ruthenium(II) Dom-
ino Manifold. Chem. – Eur. J. 2017, 23, 17449–17453. (b) Qiu, Y.;
Tian, C.; Massignan, L.; Rogge, T.; Ackermann, L. Electrooxidative
Ruthenium-Catalyzed C−H/O−H Annulation by Weak O -Coor-
dination. Angew. Chem. Int. Ed. 2018, 57, 5818–5822. (c) Qiu, Y.;
Stangier, M.; Meyer, T. H.; Oliveira, J. C. A.; Ackermann, L. Irid-
ium-Catalyzed Electrooxidative C−H Activation by Chemoselec‐
tive Redox-Catalyst Cooperation. Angew. Chem. Int. Ed. 2018, 57,
14179–14183.
(6)
Gagnier, S. V.; Larock, R. C. Palladium-Catalyzed Car-
bonylative Cyclization of Unsaturated Aryl Iodides and Dienyl
Triflates, Iodides, and Bromides to Indanones and 2-Cyclopente-
nones. J. Am. Chem. Soc. 2003, 125, 4804–4807.
(7)
(a) Kundu, K.; McCullagh, J. V.; Morehead, A. T. Hy-
(17)
Zhang, Y.; Zhao, H.; Zhang, M.; Su, W. Carboxylic Acids
droacylation of 2-Vinyl Benzaldehyde Systems: An Efficient
Method for the Synthesis of Chiral 3-Substituted Indanones. J.
Am. Chem. Soc. 2005, 127, 16042–16043. (b) Oonishi, Y.; Ogura, J.;
Sato, Y. Rh(I)-Catalyzed Intramolecular Hydroacylation in Ionic
Liquids. Tetrahedron Lett. 2007, 48, 7505–7507. (c) Yang, J.; Yoshi-
kai, N. Cobalt-Catalyzed Enantioselective Intramolecular Hy-
droacylation of Ketones and Olefins. J. Am. Chem. Soc. 2014, 136,
16748–16751.
as Traceless Directing Groups for the Rhodium(III)-Catalyzed De-
carboxylative C–H Arylation of Thiophenes. Angew. Chem. Int. Ed.
2015, 54, 3817–3821.
(18)
(a) Zhang, G.; Jia, F.; Gooßen, L. J. Regioselective C−H
Alkylation via Carboxylate-Directed Hydroarylation in Water.
Chem. – Eur. J. 2018, 24, 4537–4541. (b) Trita, A. S.; Biafora, A.;
Pichette Drapeau, M.; Weber, P.; Gooßen, L. J. Regiospecific Or-
tho-C−H Allylation of Benzoic Acids. Angew. Chem. Int. Ed. 2018,
57, 14580–14584. (c) Hu, X.-Q.; Hu, Z.; Trita, A. S.; Zhang, G.;
Gooßen, L. J. Carboxylate-Directed C–H Allylation with Allyl Al-
cohols or Ethers. Chem. Sci. 2018, 9, 5289–5294.
(8)
(a) Minatti, A.; Zheng, X.; Buchwald, S. L. Synthesis of
Chiral 3-Substituted Indanones via an Enantioselective Reduc-
tive-Heck Reaction. J. Org. Chem. 2007, 72, 9253–9258. (b) Yu, Y.-
N.; Xu, M.-H. Enantioselective Synthesis of Chiral 3-Aryl-1-Inda-
nones through Rhodium-Catalyzed Asymmetric Intramolecular
1,4-Addition. J. Org. Chem. 2013, 78, 2736–2741. (c) Yue, G.; Lei, K.;
Hirao, H.; Zhou, J. (Steve). Palladium-Catalyzed Asymmetric Re-
ductive Heck Reaction of Aryl Halides. Angew. Chem. Int. Ed. 2015,
54, 6531–6535.
(19)
(a) Han, W.-J.; Pu, F.; Li, C.-J.; Liu, Z.-W.; Fan, J.; Shi, X.-
Y. Carboxyl-Directed Conjugate Addition of C−H Bonds to α,β-
Unsaturated Ketones in Air and Water. Adv. Synth. Catal. 2018,
360, 1358–1363. (b) Shi, G.; Zhang, Y. Carboxylate-Directed C–H
Functionalization. Adv. Synth. Catal. 2014, 356, 1419–1442. (c)
Pichette Drapeau, M.; Gooßen, L. J. Carboxylic Acids as Directing
Groups for C−H Bond Functionalization. Chem. – Eur. J. 2016, 22,
18654–18677. (d) Chen, C.; Liu, P.; Tang, J.; Deng, G.; Zeng, X. Irid-
ium-Catalyzed, Weakly Coordination-Assisted Ortho-Alkynyla-
tion of (Hetero)Aromatic Carboxylic Acids without Cyclization.
Org. Lett. 2017, 19, 2474–2477. (e) Yu, J.-L.; Zhang, S.-Q.; Hong, X.
Mechanisms and Origins of Chemo- and Regioselectivities of
(9)
González, J.; Santamaría, J.; Ballesteros, A. Gold(I)-Cat-
alyzed Addition of Silylacetylenes to Acylsilanes: Synthesis of In-
danones by C–H Functionalization through a Gold(I) Carbenoid.
Angew. Chem. Int. Ed. 2015, 54, 13678–13681.
ACS Paragon Plus Environment