as the dianionic [Bi2I8(SMe2)2]2–9 and the selenacrown complex
[BiBr3([16]aneSe4)] ([16]aneSe4 = 1,5,9,13-tetraselenacyclohexa-
decane)2 the bridging halides are essentially symmetrical. The
Bi centres in the present structure are therefore pseudo-
octahedral and it seems likely that the Bi-based lone pair is
probably directed out of the triangular face defined by Br(1a),
Br(3) and Br(3b) i.e. involving the longer Bi–Br contacts.
The Bi–Te distance of 3.0533(7) Å indicates that this is a
strong bond, only marginally longer than the sum of the
covalent radii of the elements (2.89 Å). As these are the first
structural data on a Bi–Te bonded species and there are no
direct analogues with thio- or seleno-ether ligands, meaningful
comparisons are difficult. However, the dianion [Bi2I8(SMe2)2]2Ϫ
in which the SMe2 ligands are also anti (but trans to I), shows
d(Bi–S) = 3.054(8) Å9 and [BiBr3([16]aneSe4)], which also
contains a planar Br2Bi(µ-Br)2BiBr2 unit (but mutually trans
Se atoms)2 gives d(Bi–Se) = 2.952(2) and 3.095(2) Å. Thus,
the bismuth–chalcogen bond distances in these compounds are
not significantly different from the title compound despite the
much larger radius of Te vs. Se and S. The availability of
bismuth telluroether complexes and the relatively strong Bi–Te
bonds may indicate that such compounds could function as
single source precursors to the thermoelectric material Bi2Te3.10
The infinite structure identified for [BiBr3(PhTeMe)] is
unprecedented in Group 15 halide-chalcogenoether chemistry.
Structurally the closest analogues are with phosphine and
arsine ligands, e.g. the discrete dimer [As2Cl6(AsEt3)2],11 the
polymeric [AsCl3(PMe3)]10 and especially [SbI3(PMe3)]13 which
shows a very similar packing arrangement within the crystal
lattice.
[BiBr3(PhTeMe)]: Procedure as above. Yield 22%. Red–brown
powder. (Calc. for C7H8BiBr3Te: C, 12.6; H, 1.2. Found: C, 12.3; H,
0.9%).
‡ Crystal data for [BiBr3(PhTeMe)]: C7H8BiBr3Te (Mr = 668.43), mono-
clinic, P21/n, a = 8.4820(2), b = 6.7592(2), c = 22.5808(8) Å, β =
100.6760(10)Њ, V = 1272.18(6) Å3, Z = 4, Dc = 3.490 g cmϪ3, µ(Mo-Kα) =
25.486 cmϪ1, T = 120 K, R = 0.039, Rw = 0.037 for 109 parameters
against 2144 reflections with I > 2σ(I ) out of 2956 unique reflections.
Structure solution and refinement were routine.14–16 CCDC reference
crystallographic data in CIF or other electronic format.
1 W. Levason and G. Reid, J. Chem. Soc., Dalton Trans., 2001, 2953.
2 A. J. Barton, A. R. J. Genge, W. Levason and G. Reid, J. Chem. Soc.,
Dalton Trans., 2000, 859; A. J. Barton, A. R. J. Genge, W. Levason
and G. Reid, J. Chem. Soc., Dalton Trans., 2000, 2163; A. J. Barton,
N. J. Hill, W. Levason, B. Patel and G. Reid, Chem. Commun., 2001,
95; A. J. Barton, N. J. Hill, W. Levason and G. Reid, J. Chem. Soc.,
Dalton Trans., 2001, 1621; N. J. Hill, W. Levason and G. Reid,
Inorg. Chem., 2002, 41, 2070.
3 A. J. Barton, N. J. Hill, W. Levason and G. Reid, J. Am. Chem. Soc.,
2001, 123, 11801.
4 A. R. J. Genge, W. Levason and G. Reid, Chem. Commun., 1998,
2159.
5 E. G. Hope and W. Levason, Coord. Chem. Rev., 1993, 122, 109;
W. Levason, S. D. Orchard and G. Reid, Coord. Chem. Rev., 2002,
225, 159.
6 H. Schumann, A. M. Arif, A. L. Rheingold, C. Janiak, R. Hoff-
mann and N. Kuhn, Inorg. Chem., 1991, 30, 1618; W. Levason,
S. D. Orchard and G. Reid., Organometallics, 1999, 18, 1275.
7 A. R. J. Genge, W. Levason and G. Reid, J. Chem. Soc., Dalton
Trans., 1997, 4549.
8 S. P. Wuller, A. L. Seligson, G. P. Mitchell and J. Arnold, Inorg.
Chem., 1995, 34, 4854.
9 W. Clegg, N. C. Norman and N. L. Pickett, Polyhedron, 1993, 12,
1251.
We thank the EPSRC for support.
10 A. Boulouz, A. Giani, F. Pascal-Delannoy, M. Boulouz, A. Focaran
and A. Boyer, J. Cryst. Growth, 1998, 194, 336; S. K. Mishra,
S. Satpathy and O. Jepsen, J. Phys.: Condensed Matter, 1997, 9, 461.
11 G. Baum, A. Greiling, W. Massa, B. C. Hiu and J. Lorberth,
Z. Naturforsch., Teil B, 1989, 44, 560.
12 N. J. Hill, W. Levason and G. Reid, J. Chem. Soc., Dalton Trans.,
2002, 1188.
13 W. Clegg, M. R. J. Elsegood, V. Graham, N. C. Norman,
N. L. Pickett and K. Tavakkoli, J. Chem. Soc., Dalton Trans., 1994,
1743.
14 SHELXS-97: Program for Crystal Structure Solution, G. M.
Sheldrick, University of Göttingen, 1997.
Notes and references
† [SbBr3{MeTe(CH2)3TeMe}]: To an anhydrous MeCN solution of
SbBr3 (0.09 g, 0.25 mmol) was added an equimolar quantity
of MeTe(CH2)3TeMe in MeCN. The resulting orange solution was
stirred at RT for 30 min and then concentrated in vacuo to afford an
orange powder which was filtered, washed with anhydrous CH2Cl2 and
dried in vacuo. Yield 74%. (Calc. for C5H12Br3SbTe2: C, 8.7; H, 1.7.
Found: C, 8.5; H, 1.9%).
[SbI3{MeTe(CH2)3TeMe}]: Procedure as above but using thf. Yield
82%. Red powder. (Calc. for C5H12I3SbTe2: C, 7.2; H, 1.5. Found: C,
7.2; H, 2.1%).
[BiCl3{MeTe(CH2)3TeMe}]: Procedure as above and using MeCN.
Yield 44%. Brown powder. (Calc. for C5H12BiCl3Te2: C, 9.3; H, 1.9.
Found: C, 9.4; H, 2.1%).
15 TeXsan: Crystal Structure Analysis Package, Molecular Structure
Corporation, Texas, 1995.
16 R. H. Blessing, Acta Crystallogr., Sect. A, 1995, 51, 33.
J. Chem. Soc., Dalton Trans., 2002, 4316–4317
4317