Running title
Chin. J. Chem.
Wang, A.; Li, J.-Q.; Ye, J.-L.; Zheng, X.; Huang, P.-Q. Versatile One-Pot
Synthesis of Polysubstituted Cyclopent-2-enimines from
524, 79-83. (f) Romanens, A.; Bꢀlanger, G. Preparation of
Conformationally Restricted 2,2
-
and 2,2,3-Amino Esters and
,-Unsaturated Amides: Imino-Nazarov Reaction. Angew. Chem.,
Int. Ed. 2018, 57, 10352-10356. (l) Ou, W.; Han, F.; Hu, X.-N.; Chen, H.;
Huang, P.-Q. Iridium-Catalyzed Reductive Alkylations of Secondary
Amides. Angew. Chem., Int. Ed. 2018, 57, 11354-11358. (l) Wu, D.-P.;
He, Q.; Chen, D.-H.; Ye, J.-L.; Huang, P.-Q. A Stepwise Annulation for
the Transformation of Cyclic Ketones to Fused 6 and 7-Membered
Cyclic Enimines and Enones. Chin. J. Chem. 2019, 37, 315-322.
[8] For selected examples, see: (a) Shirokane, K.; Kurosaki, Y.; Sato, T.;
Chida, N. A Direct Entry to Substituted N-Methoxyamines from
N-Methoxyamides via N-Oxyiminium Ions. Angew. Chem., Int. Ed.
2010, 49, 6369-6372. (b) Shirokane, K.; Wada, T.; Yoritate, M.;
Minamikawa, R.; Takayama, N.; Sato, T.; Chida, N. Total Synthesis of
()-Gephyrotoxin by Amide-Selective Reductive Nucleophilic
Addition. Angew. Chem., Int. Ed. 2014, 53, 512-516. (c) Nakajima, M.;
Sato, T.; Chida, N. Iridium-Catalyzed Chemoselective Reductive
Nucleophilic Addition to N‑Methoxyamides. Org. Lett. 2015, 17,
1696-1699. (d) Katahara, S.; Kobayashi, S.; Fujita, K.; Matsumoto, T.;
Sato, T.; Chida, N. An Iridium-Catalyzed Reductive Approach to
Nitrones from N-Hydroxyamides. J. Am. Chem. Soc. 2016, 138,
5246-5249. (e) Katahara, S.; Kobayashi, S.; Fujita, K.; Matsumoto, T.;
Sato, T.; Chida, N. Reductive Approach to Nitrones from
N-Siloxyamides and N-Hydroxyamides. Bull. Chem. Soc. Jpn. 2017, 90,
893–904; (f) Takahashi, Y.; Yoshii, R.; Sato, T.; Chida, N.
Iridium-Catalyzed Reductive Nucleophilic Addition to Secondary
Amides. Org. Lett. 2018, 20, 5705-5708. (g) Hiraoka, S.; Matsumoto,
T.; Matsuzaka, K.; Sato, T.; Chida, N. Approach to Fully Substituted
Cyclic Nitrones from N-Hydroxylactam Derivatives: Development and
Application to the Total Synthesis of Cylindricine C. Angew. Chem.,
Int. Ed. 2019, 58, 4381-4385.
[9] For selected examples, see: (a) Pace, V.; de la Vega-Hernandez, K.;
Urban, E.; Langer, T. Chemoselective Schwartz Reagent Mediated
Reduction of Isocyanates to Formamides. Org. Lett. 2016, 18,
2750-2753. (b) Ielo, L.; Touqeer, S.; Roller, A.; Langer, T.; Holzer, W.;
Pace, V. Telescoped, Divergent, Chemoselective C1 and C1-C1
Homologation of Imine Surrogates: Access to Quaternary Chloro- and
Halomethyl-trifluoromethyl Aziridines. Angew. Chem., Int. Ed. 2019,
58, 2479-2484.
[10] (a) Gregory, A. W.; Chambers, A.; Hawkins, A.; Jakubec, P.; Dixon, D. J.
Iridium-Catalyzed Reductive Nitro-Mannich Cyclization. Chem. - Eur. J.
2015, 21, 111-114. (b) Tan, P. W.; Seayad, J.; Dixon, D. J. Expeditious
and Divergent Total Syntheses of Aspidosperma Alkaloids Exploiting
Iridium(I)-Catalyzed Generation of Reactive Enamine Intermediates.
Angew. Chem., Int. Ed. 2016, 55, 13436–13440. (c) Xie, L.-G.; Dixon,
D. J. Iridium-Catalyzed Reductive Ugi-Type Reactions of Tertiary
Amides. Nat. Commun. 2018, 9, 2841.
Derivatives Containing an All-Carbon Quaternary Center. Org. Lett.
2015, 17, 322-325. (g) Li, L.-H.; Niu, Z.-J.; Liang, Y.-M. Synthesis of
Functionalized Quinolines through a Reaction of Amides and Alkynes
Promoted by Triflic Anhydride/Pyridine. Chem. Eur. J. 2017, 23,
15300–15304. (h) Li, X. W. ; Lin, F. G.; Huang, K. M.; Wei, J. L.; Li, X. Y.;
Wang, X. Y.; Geng, X. Y.; Jiao, N. Selective -Oxyamination and
Hydroxylation of Aliphatic Amides. Angew. Chem., Int. Ed. 2017, 56,
12307–12311. (i) Li, L.-H.; Niu, Z.-J.; Liang, Y.-M. Synthesis of
Functionalized Quinolines through a Reaction of Amides and Alkynes
Promoted by Triflic Anhydride/Pyridine. Chem. Eur. J. 2017, 23,
15300–15304. (j) Xie, C.-M.; Luo, J.-S.; Zhang, Y.; Zhu, L.-L.; Hong, R. A
Chiral
Pentenolide-Based
Unified
Strategy
toward
Dihydrocorynantheal,
Dihydrocorynantheol,
Protoemetine,
Protoemetinol, and Yohimbane. Org. Lett., 2017, 19, 3592–3595. (k)
Chen, J.-J.; Long, W.-H.; Yang, Y.-G.; Wan, X.-B. Interception of
Secondary Amide Ylide with Sulfonamides: Catalyst-Controlled
Synthesis of N-Sulfonylamidine Derivatives. Org. Lett. 2018, 20,
2663–2666. (l) Li, L.-H.; Niu, Z.-J.; Liang, Y.-M. Transition-metal-free
Multinitrogenation of Amides by C–C Bond Cleavage:
A New
Approach to Tetrazoles. Chem. Commun. 2018, 54, 11148-11151. (m)
Trillo, P.; Slagbrand, T.; Adolfsson, H. Straightforward -Amino Nitrile
Synthesis Through Mo(CO)6-Catalyzed Reductive Functionalization of
Carboxamides. Angew. Chem., Int. Ed. 2018, 57, 12347-12351.
[12] (a) Ogawa, A.; Takami, N.; Sekiguchi, M.; Ryu, I.; Kambe, N.; Sonoda,
N. The First Deoxygenative Coupling of Amides by an Unprecedented
Samarium/Samarium Diiodide System. J. Am. Chem. Soc. 1992, 114,
8729–8730. (b) Fleming, I.; Ghosh, U.; Mack, S. R.; Clark, B. P. The
Reductive Coupling of Tertiary Amides to Give Enediamines Using
PhMe2SiLi. Chem. Commun. 1998, 711–712. (c) Kashimura, S.;
Ishifune, M.; Murai, Y.; Murase, H.; Shimomura, M.; Shono, T.
Electroreductive Coupling of Aliphatic Amides. A Useful Method for
the Synthesis of -Amino Ketones. Tetrahedron Lett. 1998, 39,
6199-6202. (d) Selvakumar, K.; Harrod, J. F. Titanocene-Catalyzed
Coupling of Amides in the Presence of Organosilanes to Form Vicinal
Diamines. Angew. Chem., Int. Ed. 2001, 40, 2129–2131. (e) Kumagai,
T.; Anki, T.; Ebi, T.; Konishi, A.; Matsumoto, K.; Kurata, H.; Kubo, T.;
Katsumoto, K.; Kitamura, C.; Kawase, T. An Effective Synthesis of
N,N-Dimethylamides from Carboxylic Acids and A New Route From
N,N-Dimethylamides to 1,2-Diaryl-1,2-diketones. Tetrahedron 2010,
66, 8968-8973. (f) Huang, P.-Q.; Lang, Q.-W.; Wang, A.-E; Zheng, J.-F.
Direct Reductive Coupling of Secondary Amides: Chemoselective
Formation of Vicinal Diamines and Vicinal Amino Alcohols. Chem.
Commun. 2015, 51, 1096-1099.
[13] Nahm, S.; Weinreb, S. M. N-Methoxy-N-Methylamides as Effective
Acylating Agents. Tetrahedron Lett. 1981, 22, 3815–3818.
[11] For selected important contribution from other groups, see: (a)
Bꢀlanger, G.; Larouche-Gauthier, R.; Mꢀnard, F.; Nantel, M.; Barabꢀ,
F. Intramolecular Additions of Various π-Nucleophiles to
Chemoselectively Activated Amides and Application to the Synthesis
of ()-Tashiromine. J. Org. Chem. 2006, 71, 704-712. (b) Zhou, H.-B.;
Liu, G.-S.; Yao, Z.-J. Highly Efficient and Mild Cascade Reactions
[14] (a) Liu, Y.-P.; Wang, S.-R.; Chen, T.-T.; Yu, C.-C.; Wang, A.-E; Huang,
P.-Q. Enamines as Surrogates of Alkyl Carbanions for the Direct
Conversion of Secondary Amides to -Branched Ketones. Adv. Synth.
Catal. 2019, 361, 971-975. (b) Geng, H.; Huang, P.-Q. Ketone
Synthesis by Direct, Orthogonal Chemoselective Hydroacylation of
Alkenes with Amides: Use of Alkenes as Surrogates of Alkyl
Carbanions. Chin. J. Chem. 2019, 37, DOI: 10.1002/cjoc.201900252.
[15] Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima, H. Highly
Efficient Synthesis of Aldenamines from Carboxamides by
Iridium-Catalyzed Silane-Reduction/Dehydration Under Mild
Conditions. Chem. Commun. 2009, 1574-1576.
Triggered
Trifluoromethane-sulfonate and
by
Bis(triphenyl)oxodiphosphonium
Concise Total Synthesis of
a
Camptothecin. Org. Lett. 2007, 9, 2003-2006. (c) Cui, S. L.; Wang, J.;
Wang, Y. G. Synthesis of Indoles via Domino Reaction of N-Aryl
Amides and Ethyl Diazoacetate. J. Am. Chem. Soc. 2008, 130,
13526-13527. (d) Vincent, G.; Guillot, R.; Kouklovsky, C.
Stereodivergent Synthesis of Substituted N,O-Containing Bicyclic
Compounds by Sequential Addition of Nucleophiles to
N-Alkoxybicyclolactams . Angew. Chem., Int. Ed. 2011, 50, 1350-1353.
(e) Hie, L.; Nathel, N. F. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang,
Y.-F.; Liu, P.; Houk, K. N.; Garg, N. K. Conversion of Amides to Esters
by the Nickel-Catalysed Activation of Amide C–N Bonds. Nature 2015,
[16] Vaska, L.; DiLuzio, J. W. Carbonyl and Hydrido-Carbonyl Complexes of
Iridium by Reaction With Alcohols. Hydrido Complexes by Reaction
with Acid. J. Am. Chem. Soc. 1961, 83, 2784–2785.
(The following will be filled in by the editorial staff)
Manuscript received: XXXX, 2019
Manuscript revised: XXXX, 2019
Manuscript accepted: XXXX, 2019
Chin. J. Chem. 2019, 37, XXX-XXX
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
This article is protected by copyright. All rights reserved.