10.1002/ejoc.202000871
European Journal of Organic Chemistry
FULL PAPER
[8]
[9]
a) Q. Qi, J. Qian, X. Tan, J. Zhang, L. Wang, B. Xu, B. Zou, W. Tan, Adv.
Funct. Mater. 2015, 25, 4005-4010; b) S. Jiang, J. Wang, Q. Qi, J. Qian,
B. Xu, F. Li, Q. Zhou, W. Tian, Chem. Commun. 2019, 55, 3749-3752; c)
R. Liu, G. Zhu, G. Zhang, RSC Adv. 2020, 10, 7092-7098.
molecules packed with related lower mobilities in the range of
0.21-2.69 cm2V−1s−1 for electron transports and 0.03-0.43
cm2V−1s−1 for electron transports.
W. Chen, S. Wang, G. Yang, S. Chen, K. Ye, Z. Hu, Z. Zhang, Y. Wang,
J. Phys. Chem. C 2016, 120, 587-597;
Conclusion
[10] M. Krick, J. J. Holstein, A. Wuttke, R. A. Mata, G. H. Clever, Eur. J. Org.
Chem. 2017, 5141-5146.
[11] a) T. Suzuki, H. Okada, T. Nakagawa, K. Komatsu, C. Fujimoto, H. Kagi,
Y. Matsuo, Chem. Sci. 2018, 9, 475-482; b) Y. Matsuo, Y. Wang, H. Ueno,
T. Nakagawa, H. Okada, Angew. Chem. Int. Ed. 2019, 58, 8762-8767;
Angew. Chem. 2019, 131, 8854-8859;
In summary, the fused π-extended acridone derivatives were
synthesized via the acid-promoted cyclization of N-arylathranilic
ester and the theoretical calculations revealed that the favored
angular acridone derivative was formed through a relatively lower
reaction activation energy to generate a more thermodynamically
stable intermediate. The single crystal structural analysis showed
the formation of π-π stackings along the linear acridone moiety.
However, the C-H…π interaction of flexible hexyl chain and the
aromatic surface interfered the continuous π-π stackings in the
crystals. The linearly fused acridone NB-C6 overlapped each
other so well that it dimerized in the crystalline state at the ambient
condition after a long time storage. For the phenyl-substituted
fused acridone derivatives, the pending phenyl group plays an
important role in directing the molecular packing in the crystals via
the formation of intermolecular hydrogen bonds between the
oxygen atom of carbonyl and the hydrogen atom of the pending
phenyl group. The benzene ring at the turning point of the
angularly fused acridone derivatives contains the relatively long
and short C-C bonds, which reduces the conjugation of the whole
molecule and is also reflected in the UV/vis absorption and
fluorescence emission spectra, as well as the weakened
aromaticity. The mobility calculation reveals that benzene and
naphthalene fused π-extended acridone derivatives, especially
the linearly fused ones, are good candidates of organic functional
materials with potential applications in electronic devices.
[12] a) K. Yamamoto, S. Higashibayashi, Chem. Eur. J. 2016, 22, 663-671;
b) M. Mamada, O. Inada, T. Komino, W. J. Potscavage, Jr., H.
Nakanotani, C. Adachi, ACS Cent. Sci. 2017, 3, 769−777; c) Y.-Y. Jin, Q.
Fang, J. Org. Chem. 2019, 84, 3832-3842; d) N. Deng, G. Zhang, Org.
Lett. 2019, 21, 5248-5251; e) L. Zhou, G. Zhang, Angew. Chem. Int. Ed.
2020, 59, 8963-8968; Angew. Chem. 2020, 132, 9048-9053.
[13] a) I. Sungwienwong, J. J. Ferrie, J. V. Jun, C. Liu, T. M. Barrett, Z. M.
Hostetler, N. Ieda, A. Hendricks, A. K. Muthusamy, R. M. Kohli, D. M.
Chenoweth, G. A. Petersson, E. James Petersson, J. Phys. Org. Chem.
2018, 31, e3813; b) W. Zhang, K. F. Koehler, B. Harris, P. Skolnick, J. M.
Cook, J. Med. Chem. 1994, 37, 745-757; c) A. F. F. da Silva, R. S. G. R.
Seixas, A. M. S. Silva, J. Coimbra, A. C. Fernandes, J. P. Santos, A.
Matos, J. Rino, I. Santos, F. Marques, Org. Biomol. Chem. 2014, 12,
5201-5211; d) S. Thamaraiselvi, P. S. Mohan, Z. Naturforsch. B: Chem.
Sci. 1999, 54, 1337-1341; e) R. S. G. R. Seixas, A. M. S. Silva, D. C. G.
A. Pinto, J. A. S. Cavaleiro, Synlett 2008, 3193-3197; f) L. Jayabalan, P.
Shanmugam, Synthesis 1991, 217-220.
[14] a) J. E. Anthony, Chem. Rev. 2006, 106, 5028-5048; b) J. E. Anthony,
Angew. Chem. Int. Ed. 2008, 47, 452-483; Angew. Chem. 2008, 120,
460-492; c) S. S. Zade, M. Bendikov, Angew. Chem. Int. Ed. 2010, 49,
4012-4015; Angew. Chem. 2010, 122, 4104-4107; d) U. H. F. Bunz, J. U.
Engelhart, B. D. Lindner, M. Schaffroth, Angew. Chem. Int. Ed. 2013, 52,
3810-3821; Angew. Chem. 2013, 125, 3898-3910; e) Q. Ye, C. Chi,
Chem. Mater. 2014, 26, 4046-4056; f) H. F. Bettinger, C. Tçnshoff, Chem.
Rec. 2015, 15, 364-369; g) U. H. F. Bunz, Acc. Chem. Res. 2015, 48,
1676-1686; h) U. H. F. Bunz, J. Freudenberg, Acc. Chem. Res. 2019, 52,
1575-1587; i) M. Müller, L. Ahrens, V. Brosius, J. Freudenberg, U. H. F.
Bunz, J. Mater. Chem. C 2019, 7, 14011-14034.
Acknowledgements
[15] a) Allen, C. F. H. McKee G. H. W. Org. Syn.1939, 19, 6-8; b) S. L.
MacNeil, M. Gray, L. E. Briggs, J. J. Li, V. Snieckus, Synlett 1998, 419-
421; c) R. Nishio, S. Wessely, M. Sugiura, S. Kobayashi, J. Comb. Chem.
2006, 8, 459-461; d) J. Zhao, R. C. Larock, J. Org. Chem. 2007, 72, 583-
588; e) S. L. MacNeil, M. Gray, D. G. Gusev, L. E. Briggs, V. Snieckus,
J. Org. Chem. 2008, 73, 9710-9719; f) J. Huang, C. Wan, M.-F. Xu, Q.
Zhu, Eur. J. Org. Chem. 2013, 1876-1880; g) P.-C. Huang, K.
Parthasarathy, C.-H. Cheng, Chem. Eur. J. 2013, 19, 460-464; h) Z.
Xiong, X. Zhang, Y. Li, X. Peng, J. Fu, J. Guo, F. Xie, C. Jiang, B. Lin, Y.
Liu, M. Cheng, Org. Biomol. Chem. 2018, 16, 7361–7374; i) J. Janke, A.
Villinger, P. Ehlers, P. Langer, Synlett 2019, 30, 817-820.
We are grateful for the financial support from the Jiangsu
Specially Appointed Professor Plan.
Keywords: acridone • aromaticity • conjugation • nitrogen
heterocycles • polycyclic aromatic hydrocarbons
[1]
[2]
M. Stepieꢀ, E. Goꢀka, M. ꢁyła, N. Sprutta, Chem. Rev. 2017, 117, 3479-
3716.
a) J. H. Rothman, W. C. Still, Bioorg. Med. Chem. Lett. 1999, 9, 509-512;
b) P. Nikolov, I. Petkova, G. Köler, S. Stojanov, J. Mol. Struct. 1998, 448,
247-254.
[16] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji,
X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,
B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L.
Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,
B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J.
Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F.
Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N.
Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.
P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam,
M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K.
Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16,
Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
[3]
a) P. Pander, A. Swist, R. Motyka, J. Soloducho, F. B. Diasa, P. Data, J.
Mater. Chem. C 2018, 6, 5434–5443; b) Q. T. Siddiqui, A. A. Awasthi, P.
Bhui, M. Muneer, K. R. S. Chandrakumar, S. Bose, N. Agarwal, J. Phys.
Chem. C 2019, 123, 1003-1014; c) R. Liu, W. Ding, Q. Zhang, Y. Song,
G. Zhang, ChemistrySelect 2019, 4, 10536-10542.
a) K. D. Thériault, C. Radford, M. Parvez, B. Heyne, T. C. Sutherland,
Phys. Chem. Chem. Phys. 2015, 17, 20903-20911; b) B. K. Sharma, A.
M. Shaikh, N. Agarwal, R. M. Kamble, RSC Adv. 2016, 6, 17129-17137.
a) W.-C. Chow, G.-J. Zhou, W.-Y. Wong, Macromol. Chem. Phys. 2007,
208, 1129-1136; b) R. Liu, G. Zhu, Y. Ji, G. Zhang, Eur. J. Org. Chem.
2019, 3217-3223.
[4]
[5]
[6]
[7]
D. A. Vezzu, J. C. Deaton, M. Shayeghi, Y. Li, S. Huo, Org. Lett. 2009,
11, 4310-4313.
[17] CCDC 2003932-2003942 contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
R. Liu, H. Gao, L. Zhou, Y. Ji, G. Zhang, ChemistrySelect 2019, 4, 7797-
7804.
9
This article is protected by copyright. All rights reserved.