10.1002/chem.201800336
Chemistry - A European Journal
COMMUNICATION
Yamano, S. Zhou, S. M. Anthony, N. K. Garg, Nat. Commun. 2016, 7,
11554; d) B. J. Simmons, N. A. Weires, J. E. Dander, N. K. Garg, ACS
Catal. 2016, 6, 3176-3179; e) J. E. Dander, N. A. Weires, N. K. Garg,
Org. Lett. 2016, 18, 3934-3936; f) L. Hie, E. L. Baker, S. M. Anthony, J.-
N. Desrosiers, C. Senanayake, N. K. Garg, Angew. Chem. Int. Ed. 2016,
55, 15129-15132; Angew. Chem. 2016, 128, 15353-15356. g) J. E.
Dander, N. K. Garg, ACS Catal. 2017, 7, 1413-1423; h) S. A. Ruider, N.
Maulide, Angew. Chem. Int. Ed. 2015, 54, 13856-13858; Angew. Chem.
2015, 127, 14062-14064; i) N. A. Weires, D. D. Caspi, N. K. Garg, ACS
Catal. 2017, 7, 4381-4385.
not only of theoretical significance, but also of potential application
value.
In conclusion, we have designed and presented the first
fluoride-catalyzed activation of secondary and primary amides,
which demonstrated as an efficient way to convert amides to
esters. The approach circumvents the universal problem that
transition-metal-catalyzed esterification methods have confronted.
Thus, enabling the synthesis of esters from a wide range of
amides under general reaction conditions. To be more precise,
both aromatic and aliphatic secondary and primary amides are
covered by this protocol. The methodology has demonstrated
excellent functional group tolerance and high yields under mild
conditions and only 1.2 equivalents of the alcohol nucleophile. In
brief, this diverse method of amide activation is expected to
expand the application of esterification of amides and may lead to
new discovery of amide transformation.
[6]
[7]
a) G. Meng, M. Szostak, Org. Biomol. Chem. 2016, 14, 5690-5705; b) G.
Meng, M. Szostak, Org. Lett. 2016, 18, 796-799; c) G. Meng, M. Szotak,
Angew. Chem. Int. Ed. 2015, 54, 14518-14522; Angew. Chem. 2015, 127,
14726-14730; d) G. Meng, M. Szostak, Org. Lett. 2015, 17, 4364-4367;
e) S. Shi, M. Szostak, Chem. Eur. J. 2016, 22, 10420-10424; f) C. Liu, G.
Meng, Y. Liu, R. Liu, R. Lalancette, R. Szostak, M. Szostak, Org. Lett.
2016, 18, 4194-4197.
a) X. Li, G. Zou, Chem. Commun. 2015, 51, 5089-5092; b) X. Li, G. Zou,
J. Organomet. Chem. 2015, 794, 136-145; c) C. Liu, Y. Liu, R. Liu, R.
Lalancette, R. Szostak, M. Szostak, Org. Lett. 2017, 19, 1434-1437; d)
C. W. Cheung, M. L. Ploeger, X. Hu, ACS Catal. 2017, 7, 7092-7096; e)
G. Meng, R. Lalancette, R. Szostak, M. Szostak, Org. Lett. 2017, 19,
4656-4659; g) G. Meng, R. Szostak, M. Szostak, Org. Lett. 2017, 19,
3596-3599.
Acknowledgements ((optional))
The authors gratefully acknowledge the support of Science and
Technology Planning Project of Guangdong Province
(2017A010103017), National Natural Science Foundation of
China (21272080)..
[8]
[9]
a) Y. Bourne-Branchu, C. Gosmini, G. Danoun, Chem. Eur. J. 2017, 23,
1-6; b) R. Takise, K. Muto, J. Yamaguchi, Chem. Soc. Rev. 2017, 46,
5864-5888.
a) G. Meng, M. Szostak, ACS Catal. 2017, 7, 7251-7256; b) S. Shi, M.
Szostak, Org. Lett. 2017, 19, 3095-3098; c) C. Liu, M. Szostak, Angew.
Chem. Int. Ed. 2017, 56, 12718-12722; Angew. Chem. 2017, 129,
12892-12896; d) C. Liu, G. Meng, M. Szostak, J. Org. Chem. 2016, 81,
12023-12030. e) G. Meng, M. Szostak, Org. Lett. 2016, 18, 796-799; f)
S. Shi, G. Meng, M. Szostak, Angew. Chem. Int. Ed. 2016, 55, 6959-
6963; Angew. Chem. 2016, 128, 7073-7077; g) J. Hu, M. Wang, X. Pu,
Z, Shi, Nat. Commun. 2017, 8, 14993; h) J. Hu, Y. Zhao, J. Liu, Y. Zhang,
Z. Shi, Angew. Chem. Int. Ed. 2016, 55, 8718-8722; Angew. Chem. 2016,
128, 8860-8864; i) W. Srimontree, A. Chatupheeraphat, H.-H. Liao, M.
Rueping, Org. Lett. 2017, 19, 3091-3094; j) X. Liu, H. Yue, J. Jia, L. Guo,
M. Rueping, Chem. Eur. J. 2017, 23, 11771-11775; k) H. Yue, L. Guo,
S.C. Lee, X. Liu, M. Rueping, Angew. Chem. Int. Ed. 2017, 56, 3972-
3976; Angew. Chem. 2017, 129, 4030-4034; l) H. Yue, L. Guo, H.-H. Liao,
Y. Cai, C. Zhu, M. Rueping, Angew. Chem. Int. Ed. 2017, 56, 4282-4285;
Angew. Chem. 2017, 129, 4346-4349; m) H. Wu, T. Liu, M. Cui, Y. Li, J.
Jian, H. Wang, Z. Zeng, Org. Biomol. Chem. 2017, 15, 536-540.
…
Keywords: esterification • fluoride catalysis • aliphatic amides •
generic catalyst system • metal-free
[1]
a) S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451-3479; b)
A. A. Kaspar, J. M. Reichert, Drug Discovery Today. 2013, 18, 807-817;
c) V. Ng, W. C. Chan, Chem. Eur. J. 2016, 22, 12606-12616; d) “The
Amide Linkage: Structural Significance”: Chemistry, Biochemistry and
Materials Science (Eds.: A. Greenberg, C. M. Breneman, J. F. Liebman),
Wiley-Interscience, New York, 2003.
[2]
[3]
a) S. Negoro, Appl. Microbiol. Biotechnol. 2000, 54, 461-466; b)
Proteases: Structure and Function (Eds.: K. Brix, W. StÖcker), Springer,
2013.
a) S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815-3818; b) T.
A. Dineen, M. A. Zajac, A. G. Myers, J. Am. Chem. Soc. 2006, 128,
16406-16409. c) J. T. Spletstoser, J. M. White, A. R. Tunoori, G. I. Georg,
J. Am. Chem. Soc. 2007, 129, 3408-3419.
[3]
[4]
[5]
K. Ouyang, W. Hao, W. X. Zhang, Z. Xi, Chem. Rev. 2015, 115, 12045-
12090.
a) L. Hie, N. F. Fine Nathel, T. Shah, E. L. Baker, X. Hong, Y.-F. Yang,
P. Liu, K. N. Houk, N. K. Garg, Nature 2015, 524, 79-83; b) N. A. Weires,
E. L. Baker, N. K. Garg, Nat. Chem. 2016, 8, 75-79; c) E. L. Baker, M. M.
This article is protected by copyright. All rights reserved.