10.1002/anie.201903019
Angewandte Chemie International Edition
COMMUNICATION
CuI. This assumption is confirmed by EPR investigations, which
showed that addition of N-phenylmorphline to a CuII solution
under inert atmosphere resulted in a fast disappearance of the
CuII EPR signal and the formation of a temporary signal at g =
2.004 with unresolved hyperfine structure typical for an organic
radical A (Fig. S3).
[1] a) M. Murakami, N. Ishida, J. Am. Chem. Soc. 2016, 138, 13759–13769;
b) F. Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613-8661; c) M.
Murakami, N. Ishida, Nat. Chem. 2017, 9, 298-299.
[2] a) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169; b) J.
He, M. Wasa, K. S. L. Chan, Q. Shao, J. Q. Yu, Chem. Rev. 2017, 117,
8754-8786.
[3] a) J. B. Roque, Y. Kuroda, L. T. Gottemann, R. Sarpong, Science 2018,
361, 171-174; b) Y. Xia, G. Lu, P. Liu, G. Dong, Nature 2016, 539, 546-
550; c) J. Liu, X. Qiu, X. Huang, X. Luo, C. Zhang, J. Wei, J. Pan, Y.
Liang, Y. Zhu, Q. Qin, S. Song, N. Jiao, Nat. Chem. 2019, 11, 71-77; d) E.
Ota, H. Wang, N. L. Frye, R. R. Knowles, J. Am. Chem. Soc. 2019, 141,
1457-1462.
[4] a) A. Masarwa, D. Didier, T. Zabrodski, M. Schinkel, L. Ackermann, I.
Marek, Nature 2014, 505, 199-203. b) M. Gozin, A. Weisman, Y. Ben-
David, D. Milstein, Nature 1993, 364, 699-701.
[5] C. J. Allpress, L. M. Berreau, Coord. Chem. Rev. 2013, 257, 3005-3029.
[6] a) S. S. Stahl, Angew. Chem. Int. Ed. 2004, 43, 3400-3420; b) C. E. Elwell,
N. L. Gagnon, B. D. Neisen, D. Dhar, A. D. Spaeth, G. M. Yee, W. B.
Tolman, Chem. Rev. 2017, 117, 2059-2107; c) K. V. N. Esguerra, J. P.
Lumb, Angew. Chem. Int. Ed. 2018, 57, 1514-1518.
[7] a) T. J. Osberger, D. C. Rogness, J. T. Kohrt, A. F. Stepan, M. C. White,
Nature 2016, 537, 214-219; b) A. E. Wendlandt, A. M. Suess, S. S. Stahl,
Angew. Chem. Int. Ed. 2011, 50, 11062-11087.
[8] H. al Kandari, N. Katsumata, S. Alexander, M. A. Rasoul, J. Clin.
Endocrinol. Metab. 2006, 91, 2821-2826.
[9] J. Basran, I. Efimov, N. Chauhan, S. J. Thackray, J. L. Krupa, G. Eaton, G.
A. Griffith, C. G. Mowat, S. Handa, E. L. Raven, J. Am. Chem. Soc. 2011,
133, 16251-16257.
The reduction of CuII to CuI by 21a is also evident from UV-Vis
measurements which showed the decay of the ligand-to-metal
charge transfer (LMCT) and the weak d-d transition bands of
CuII below 300 nm and around 750 nm, while new metal-to-
ligand charge transfer bands (MLCT) of CuI at 320 and 466 nm
appeared (Fig. S4). In addition, transient UV-vis bands at 913
and 1034 nm were detected, which we assign tentatively to the
formation of radical intermediate A (eq. 1). No further detailed
knowledge has been obtained from in situ EPR investigations,
since the next catalytic reaction step is very complex which
might involve H or proton abstraction from amino radical as well
as activation of O2 by CuI or intermediate A to form superoxide
species.
[10] F. Varfaj, S. N. Zulkifli, H. G. Park, V. L. Challinor, J. J. De Voss, P. R.
Ortiz de Montellano, Drug Metab. Dispos. 2014, 42, 828-838.
[11] a) F. Saliu, M. Orlandi, M. Bruschi, ISRN Org. Chem. 2012, 2012,
281642; b) R. Suarez-Bertoa, F. Saliu, M. Bruschi, B. Rindone,
Tetrahedron 2012, 68, 8267-8275.
In conclusion, we have developed a general protocol for the
aerobic cleavage of Cα(sp3)–Cβ(sp3) single bonds in amines (>70
examples) using a practical and inexpensive copper-catalyst.
This system is effective for conversion of industrial bulk amines
but also for late-stage functionalization of modified natural
products and bioactive molecules. Complementary to other
oxidation reactions of amines, excellent site-selectivity and
functional-group tolerance are observed, e.g. aldehyde and
olefins remained untouched.
[12] J. B. Roque, Y. Kuroda, L. T. Gottemann, R. Sarpong, Nature 2018, 564,
244-248.
[13] a) D. Hruszkewycz, S. McCann, S. Stahl, 2016, 67-83; b) L. Que, Jr., W.
B. Tolman, Nature 2008, 455, 333-340; c) M. J. Schultz, M. S. Sigman,
Tetrahedron 2006, 62, 8227-8241. d) Q. Wu, Y. Luo, A. Lei, J. You, J. Am.
Chem. Soc. 2016, 138, 2885-2888; e) K. Wu, Z. Huang, Y. Ma, A. Lei,
RSC Advances 2016, 6, 24349-24352.
[14] M. T. Schümperli, C. Hammond, I. Hermans, ACS Catal. 2012, 2, 1108-
1117.
[15] J. Rose, N. Castagnoli, Med. Res. Rev. 1983, 3, 73-88.
[16] N. J. Leonard, A. S. Hay, R. W. Fulmer, V. W. Gash, J. Am. Chem. Soc.
1955, 77, 439-444.
[17] C. J. Legacy, A. Wang, B. J. O'Day, M. H. Emmert, Angew. Chem. Int. Ed.
2015, 54, 14907-14910.
Acknowledgements
[18] For a copper oxide catalyzed similar reaction of tri-n-butyl amine see: a)
M. Wang, X.-K. Gu, H.-Y. Su, J.-M. Lu, J.-P. Ma, M. Yu, Z. Zhang, F.
Wang, J. Catal. 2015, 330, 458-464.; for photocatalytic cleavage reactions
see: b) Y. Zhao, S. Cai, J. Li, D. Z. Wang, Tetrahedron 2013, 69, 8129-
8131; c) W. Ji, P. Li, S. Yang, L. Wang, Chem. Commun. 2017, 53, 8482-
8485; for metabolite studies using a Cu catalyst see: d) J. Genovino, S.
Lutz, D. Sames, B. B. Toure, J. Am. Chem. Soc. 2013, 135, 12346-12352.
[19] M. B. Al-Ghorbani, A. B.; Mamatha, S. V. Z.; Ara Khanum, S., J. Chem.
Pharm. Res. 2015, 7, 281-301.
We gratefully acknowledge the support from the Federal Ministry
of Education and Research (BMBF) and the State of
Mecklenburg-Vorpommern. We thank Dr. Wolfgang Baumann,
Susann Buchholz and Dr. Christine Fischer for their excellent
analytical support, Dr. Haijun Jiao, Zhihong Wei, Bianca Wendt
and Dr. Basudev Sahoo (all at LIKAT) for valuable discussions.
[20] A. S. Tsang, A. Kapat, F. Schoenebeck, J. Am. Chem. Soc. 2016, 138,
518-526.
Keywords: amines • morpholines • copper • air • C-C cleavage
This article is protected by copyright. All rights reserved.