10.1002/anie.201804197
Angewandte Chemie International Edition
COMMUNICATION
Table 4. The scope of aryl bromides.[a]
Baudoin, Chem. Soc. Rev. 2011, 40, 4902; d) H. Li, B.-J. Li, Z.-J. Shi,
Catal. Sci. Technol. 2011, 1, 191; e) G. Rouquet, N. Chatani, Angew.
Chem. Int. Ed.2013, 52, 11726; f) O. Daugulis, J. Roane, L.D. Tran, Acc.
Chem. Res. 2015, 48, 1053; g) G. He, B. Wang, W. A. Nack, G. Chen,
Acc. Chem. Res. 2016, 49, 635; h) X. Lu, B. Xiao, R. Shang, L. Liu,
Chin. Chem. Lett. 2016, 27, 305; i) J. He, M. Wasa, K. S. L. Chan, Q.
Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754; j) Y. Xu, G. Dong, Chem.
Sci. 2018, 9, 1424.
PdCl2 (6 mol%)
Ar
( )2
H
O
O
H
L16
(6 mol%)
+
PIP
Ar Br
PIP
Ph
Ph
( )2
N
N
K2CO3 (1.5 equiv)
H
H
1h
2
t-BuOH, 125 oC, N2, 24 h
3
Me
OMe
SCF3
O
O
O
O
PIP
PIP
PIP
PIP
Ph
Ph
Ph
Ph
( )2
( )2
( )2
( )2
N
H
N
N
N
[4]
[5]
S. Anas, A. Cordi, H. B. Kagan, Chem. Commun. 2011, 47, 11483.
a) D. Katayev, M. Nakanishi, T. Bürgi, E. P. Kündig, Chem. Sci., 2012,
3, 1422; b) E. Larionov, M. Nakanishi, D. Katayev, C. Besnard, E. P.
Kündig, Chem. Sci. 2013, 4, 1995.
H
H
H
3hb
3hc
3hd
3he
, 86%, 89.5:10.5 er
83%, 93:7 er[b]
CF3
, 79%, 90:10 er
, 70%, 86:14 er
89%, 92:8 er[d]
, 91%, 90.5:9.5 er
51%, 94:6 er[b]
Ph
48%, 93.5:6.5 er[c]
[6]
a) N. Martin, C. Pierre, M. Davi, R. Jazzar, O. Baudoin, Chem. Eur. J.
2012, 18, 4480; c) L. Yang, R. Melot, M. Neuburger, O. Baudoin, Chem.
Sci. 2017, 8, 1344; D. Dailler, R. Rocaboy, O. Baudoin, Angew. Chem.
Int. Ed. 2017, 56, 7218.
O
O
Ph
PIP
Ph
PIP
( )2
( )2
N
N
H
H
3hf
, 74%, 93:7 er
3hg
, 81%, 93:7 er
[7]
[8]
a) T. Saget, S. J. Lemouzy, N. Cramer, Angew. Chem. Int. Ed. 2012, 51,
2238; b) T. Saget, N. Cramer, Angew. Chem. Int. Ed. 2013, 52, 7865.
a) B.-F. Shi, N. Maugel, Y.-H. Zhang, J.-Q. Yu, Angew. Chem. Int. Ed.
2008, 47, 4882; b) K. J. Xiao, D. W. Lin, M. Miura, R. Y. Zhu, W. Gong,
M. Wasa, J. Q. Yu, J. Am. Chem. Soc. 2014, 136, 8138; c) Q.-F. Wu,
P.-X. Shen, J. He, X.-B. Wang, F. Zhang, Q. Shao, R.-Y. Zhu, C.
Mapelli, J. X. Qiao, M. A. Poss, J.-Q. Yu, Science 2017, 355, 499.
a) C. He, M. J. Gaunt, Angew. Chem. Int. Ed. 2015, 54, 15840-15844;
b) A. P. Smalley, J. D. Cuthbertson, M. J. Gaunt, J. Am. Chem. Soc.
2017, 139, 1412.
CO2Me
O
F
Cl
CN
O
O
O
Ph
PIP Ph
PIP Ph
PIP Ph
PIP
( )2
( )2
( )2
( )2
N
N
N
N
H
H
H
H
3hh
, 80%, 89:11 er
85%, 90.5:9.5 er[e]
NO2
3hi
3hj
3hk
, 85%, 85:15 er
50%, 93.5:6.5 er[b]
, 46%, 89.5:10.5 er
59%, 93:7 er[b]
, 50%, 89.5:10.5 er
[9]
Me
MeO
Ph
Ac
O
O
O
O
Ph
PIP Ph
PIP
PIP Ph
PIP
( )2
( )2
( )2
( )2
N
N
N
N
[10] a) S.-B. Yan, S. Zhang, W.-L. Duan, Org. Lett. 2015, 17, 2458; b) H.
Wang, H.-R. Tong, G. He, G. Chen, Angew. Chem. Int. Ed. 2016, 55,
15387.
H
H
H
H
3hl, 52%, 94:6 er 3hm, 82%, 89.5:10.5 er 3hn, 68%, 91.5:8.5 er
3ho, 85%, 91:9 er
42%, 93:7 er[f]
OMe
79%, 91:9 er[b]
F
44%, 92.5:7.5 er[f]
Me
[11] F.-L. Zhang, K. Hong, T.-J. Li, H. Park, J.-Q. Yu, Science 2016, 351,
252.
Ph
Ph
F
Me
MeO
O
O
O
O
[12] Pd(II): a) P. Jain, P. Verma, G. Xia, J.- Q. Yu, Nat. Chem. 2016, 9, 140;
Pd(0): b) J. Pedroni, M. Boghi, T. Saget and N. Cramer, Angew. Chem.
Int. Ed. 2014, 53, 9064.
PIP Ph
PIP
Ph
PIP
Ph
PIP
( )2
( )2
( )2
( )2
N
N
N
N
H
H
H
H
3hp, 56%, 90:10 er 3hq, 77%, 82.5:17.5 er 3hr, 63%, 90.5:9.5 er 3hs, 69%, 92.5:7.5 er
70%, 89.5:10.5 er[b] 68%, 94:6 er[g]
[13] Pd(II): a) M. Wasa, K. M. Engle, D. W. Lin, E. J. Yoo, J. Q. Yu, J. Am.
Chem. Soc. 2011, 133, 19598–19601; d) K. S. L. Chan, H.-Y. Fu, J.-Q.
Yu, J. Am. Chem. Soc. 2015, 137, 2042–2046; c) J. He, Q. Shao, Q.
Wu, J.-Q. Yu, J. Am. Chem. Soc. 2017, 139, 3344; d) Q.-F. Wu, X.-B.
Wang, P.-X. Shen, J.-Q. Yu, ACS Catal. 2018, 8, 2577.
[a] Standard conditions. [b] PdCl2 (3 mol%), L16 (3 mol%), t-BuOH (0.5 mL),
0.3 mmol scale. [c] PdCl2 (3 mol%), L18 (3 mol%), t-BuOH (1.0 mL), 0.3 mmol
scale. [d] PdCl2 (3 mol%), L19 (3 mol%), t-BuOH (0.5 mL), 0.3 mmol scale. [e]
PdCl2 (3 mol%), L14 (3 mol%), t-BuOH (1.0 mL), 0.3 mmol scale. [f] PdCl2 (3
mol%), L16 (3 mol%), t-BuOH (1.0 mL), 0.3 mmol scale. [g] PdCl2 (3 mol%),
L18 (3 mol%), t-BuOH (0.5 mL), 0.3 mmol scale.
[14] Pd(0): a) M. Nakanishi, D. Katayev, C. Besnard, E. P. Kündig, Angew.
Chem. Int. Ed. 2011, 50, 7438; b) T. Saget, N. Cramer, Angew. Chem.,
Int. Ed. 2012, 51, 12842; c) J. Pedroni, T. Saget, P. A. Donets, N.
Cramer, Chem. Sci. 2015, 6, 5164; d) J. Pedroni, N. Cramer, Angew.
Chem., Int. Ed. 2015, 54, 11826; e) P. M. Holstein, M. Vogler, P. Larini,
G. Pilet, E. Clot, O. Baudoin, ACS Catal. 2015, 5, 4300; f) J. Pedroni, N.
Cramer, J. Am. Chem. Soc. 2017, 139, 12398.
Acknowledgements
[15] G. Chen, W. Gong, Z. Zhuang, M. S. Andrä, Y.-Q. Chen, X. Hong, Y.-F.
Yang, T. Liu, K. N. Houk, J.-Q. Yu, Science. 2016, 353, 1023-1027.
[16] a) V. G. Zaitsev, D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 2005,
127, 13154; b) D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 2010,
132, 3965.
Financial support from the NSFC (21772170, 21572201,
21422206), the National Basic Research Program of China
(2015CB856600), the Fundamental Research Funds for the
Central
Universities
(2018XZZX001-02)
is
gratefully
[17] K. M. Engle, J.-Q. Yu, J. Org. Chem. 2013, 78, 8927.
[18] Q. Zhang, X.-S. Yin, S. Zhao, S.-L. Fang, B.-F. Shi, Chem. Commun,
2014, 50, 8353-8355.
acknowledged.
Keywords: enantioselectivity • C-H activation • cooperative
[19] a) F.-J. Chen, S. Zhao, F. Hu, K. Chen, Q. Zhang, S.-Q. Zhang, B.-F.
Shi, Chem. Sci. 2013, 4, 4187; b) Q. Zhang, K. Chen, W. Rao, Y.
Zhang, F.-J. Chen, B.-F. Shi, Angew. Chem. Int. Ed. 2013, 52, 13588.
[20] For enantioselective allylic C-H functionalization enabled by cooperative
catalysis of palladium and CPA, see: a) H.-C. Lin, P.-S. Wang, Z.-L.
Tao, Y.-G. Chen, Z.-Y. Han, L.-Z. Gong, J. Am. Chem. Soc. 2016, 138,
14354; b) P.-S. Wang, H.-C. Lin, Y.-J. Zhai, Z.-Y. Han, L.-Z. Gong,
Angew. Chem. Int. Ed. 2014, 53, 12218.
effects • palladium• bidentate auxiliary
[1]
For selected reviews of asymmetric C−H activation, see: a) T. G. Saint-
Denis, R.-Y. Zhu, G. Chen, Q.-F. Wu, J.-Q. Yu, Science 2018, 359,
759; b) C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem.
Rev. 2017, 117, 8908; c) J. Pedroni, N. Cramer, Chem. Commun. 2015,
51, 17647; d) C. Zheng, S.-L. You, RSC Adv. 2014, 4, 6173; e) J.
Wencel-Delord, F. Colobert, Chem. Eur. J. 2013, 19, 14010.
[21] Y. Wei, H.-R. Tang, X.-F. Cong, B. Rao, C. Wu, X.-M. Zeng, Org. Lett.,
2014, 16, 2248.
[2]
[3]
a) H. M. L. Davies, J. D. Manning, Nature 2008, 451, 417; b) M. P.
Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704; c) F.
Collet, C. Lescot, P. Dauban, Chem. Soc. Rev. 2011, 40, 1926; d) J. L.
Roizen, M. E. Harvey, J. Du Bois, Acc. Chem. Res. 2012, 45, 911.
For selected reviews on C(sp3)−H bond activation: a) X. Chen, K. M.
Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem., Int. Ed. 2009, 48, 5094; b)
b) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; c) O.
[22] CCDC 1835310 (3hf) contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
[23] Consistent with this result, the use of a well-defined Pd(L16)2(CH3CN)2
complex as catalyst resulted in a slightly lower ee than the optimized
conditions using 6 mol% PdCl2 and 6 mol% CPA L16 (Table S6, entries
13 and 9).
This article is protected by copyright. All rights reserved.