Chin. J. Chem.
Te mp la te
Reports
δ 7.80 – 7.77 (m, 2H), 7.55 – 7.48 (m, 1H), 7.45 – 7.39 (m, 2H),
7.11 (s, 1H), 7.05 – 6.96 (m, 4H), 2.26 (s, 3H); 13C NMR(100 MHz,
CDCl 3) δ 138.9, 135.4, 133.6, 132.9, 129.8, 128.9, 127.2, 122.3,
20.8; HRMS (EI ) for C13H13NO2S Calculated: 247.0667, found:
247.0664.
Conclusions
In
summa ry,
a
straightforward
multi comp onen t
sulfonamidation of ni troa renes , sodium metabisulfite and bo roni c
acids was developed under transition-me tal-free conditions fo r
modular sulfonamide constructi on fro m readil y available and
low-cost materials. The inorganic salt sodium metabisulfite no t
only served as the sulfur dioxide source, but also acted as an
efficient reductant and activator for this sulfonamidation. Notabl y,
naturally occurring biomolecules and pharmaceutical systems
with multiple heteroatoms and sensitive functional groups we re
sucessfully in ves tiga ted in this transformtion to provide diverse
sulfonamide-containing cross-linkages. Mechanistic studies
demonstrated that ni trosoa rene c is the intermediate and the
activation of boronic a cid is the rate -de te rminin g step i n the
current protocol. The convenient and practical s trate gy fo r the
synthesis of multifunctional sulfonamides from readily available
sta rtin g materials p ro vi des a grea t po te n tial for drug discovery.
Fu rthe r drug discovery studies with this cross-linking protocol a re
in progressin our laboratory.
Supporting Information
The supporting information for this article is available on the
Acknowledgement
The authors are grateful for the financial support provided by
The National Key Research and Development Program of China
(2017YFD0200500), NSFC (21971065, 21722202, 21672069 and
21871089 for M.W.), S&TCSM of Shanghai (Grant 18JC1415600),
Professor of Special Appointment (Eastern Scholar) at Shanghai
Institutions of Higher Learning, the National Program for Support
o f Top -notch Young Professionals, and Innovative Research Team
of High-Level Local Universities in Shanghai.
References
Experimental
General information
[1] Wang, J.; Hou, T. J. Chem. Inf. Model. 2010, 50, 55-67.
[2] (a) Ilardi, E. A.; Vita ku, E.; Nja rda rs on, J. T. J. Med. Chem. 2014, 57,
2832-2842; (b) Feng, M.; Ta n g, B.; Liang, S.; Jiang, X. Curr. Top. Med.
Chem. 2016, 16, 1200-1216; (c) Scott, K. A.; Njardarson, J . T. Top .
Med. Chem. 2018, 376, 5. (d) “Sulfur Chemistry”: Jiang, X. Top ic s i n
Current Chemistry, Springer, Berlin, 2018. (e) Wa ng, N.;
Saidhareddy, P. ; Jiang, X. Nat. Prod. Rep. 2020, 37,246-275.
[3] (a) Bollag, G.; Tsai, J.; Zha ng, J.; Zha ng, C.; Ibra him, P.; Nolop, K.;
Hirth, P. Nat. Rev. Drug Discov. 2012, 11, 873-886. (b) Rubin, L. J.;
Ba desch, D. B.; Ba rs t, R. J. et al. N. Engl. J. Med. 2002, 346, 896-903.
(c) Menzies, A. M.; Long, G. V. Clin. C an c er Res. 2014, 20, 2035-2043.
(d) Devcic, Z.; Loncaric, S. An al yst 1977, 102, 869-872. (e) Zeiher, B.
G.; Ma tsuoka , S.; Kawabata, K.; Repine, J. E. Crit. Care. Med. 2002,
30, S274-S280. (f) Tanaka, S.; Kochi, S.; Kunita , H.; Ito, S.;
Kameya-Iwaki, M. Eur. J.Plant. Pathol. 2013, 105, 577-584.
[4] (a) Nishikawa, M.; Inaba , Y.; Furukawa, M. Chem. Pharm. Bull. 1983,
31, 1374-1377. (b) Ca ddick, S. J.; Wilden, D.; Judd, D. B. J. Am. Chem.
Soc. 2004, 126,1024-1025.
1H and 13C NMR spe ctra we re re co rded on 400 MH z NMR
spectrometers (Bruker AVANCE) using CDCl 3. Chemical shifts are
reported in parts per million (ppm). Chemical shifts for protons
are reported in parts per million relative to chloroform or DMSO
(CHCl 3 δ 7.26, DMSO δ 2.50). Chemical shifts for carbon are
reported in parts per million relative to chloroform or DMSO
(CHCl 3 δ 77.0, DMSO δ 39.52). Data are represented as follows:
chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t =
triplet, q = quartet, m = multiplet), coupling constants in Hertz
(Hz), in te gration. Mass spectra were recorded on a Shimadzu
GCMS-QP2010 Ultra. IR spectra were recorded on TENSOR (27)
Series FT-IR241.Spectrometers.
General procedurefor the sulfonamide synthesis
Under a N2 atmosphere, ni troa renes (0.2 mmol , 1.0 equiv),
Na2S2O5 (0.6 mmol , 3.0 equiv), boronic acid (0.3 mmol, 1.5 equiv),
Li3PO4 (0.4 mmol , 2.0 equiv), choline chloride (0.2 mmol, 1.0 equiv)
and DMF (2 mL) were added to a Schlenk tube. The reaction was
stirred at 130 oC for 10 h. Subsequently, wa te r was added and the
solu tio n was e xtra cte d wi th e th yl a ce ta te . The o rgani c la ye rs we re
combined and d ri ed o ve r anhydrous sodium sulfate. After
evaporation of solvent, the residue was purified by column
chromatography to give the corresponding products.
N-(p-tolyl)benzenesulfonamide (3): Prepared following
gene ral p ro cedu re using 1-me th yl -4- nitrobenzene (27.4 mg, 0.2
mmol), Na 2S2O5 (114.1 mg, 0.6 mmol), phenylboronic acid (36.6
mg, 0.3 mmol), Li3PO4 (46.3 mg, 0.4 mmol ), choline chloride (27.9
mg, 0.2 mmol) and DMF (2 mL), the rea ction was s ti rre d at 130 oC
for 10 h gi vi n g 3 in 80% yield (39.6 mg) as a white solid by column
chromatography (PE/EA = 2/1, Rf = 0.3). 1H NMR(400 MHz, CDCl3)
[5] Kim, T.; McCarver, S. J.; Lee, C.; MacMillan, D. W. C. Angew. Chem.
Int. Ed. 2018, 57, 3488-3492.
[6] For reviews, see: (a) Aziz, J.; Messaoudi, S.; Ala mi, M.; Ha m ze , A. Org.
Biomol. Chem. 2014, 12, 9743-9759. (b) Emmett, E. J.; Willis, M. C.
Asian J. Org. Chem. 2015, 4, 602-611. (c) Qiu, G.; Zhou, K.; Ga o, L.;
Wu, J. Org. Chem. Front. 2018, 5, 691-705. (d) Hofma n, K.; Liu, N.-W.;
Ma nolika kes , G. Chem. -Eur. J. 2018, 24, 11852-11863. (e) Wa ng, M.;
J ia ng, X. Chin. Sci. Bull. 2018, 63, 2707-2716. (f) Qiu, G.; Zhou, K.;Wu,
J. Chem. Commun. 2018, 54, 12561-12569. (g) Ye, S.; Qiu, G.; Wu, J.
Chem. Commun. 2019, 55, 1013-1019. (h) Ye, S.; Yang, M.; Wu, J.
Chem. Commun. 2020, 56, 4145-4155.
www.cjc.wiley-vch.de
© 2018 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2018, template
This article is protected by copyright. All rights reserved.