4
Tetrahedron Letters
8.
a) Berry MB, Blagg J, Craig D, Willis MC. Synlett 1992; 8: 659-
660. b) Djuric SW. J. Org. Chem. 1984; 49: 1311-1312.
a) Kihara N, Ii R, Ogawa A. J. Polym. Sci., Part A: Polym. Chem.
2007; 45: 963–967. b) Kihara N, Iino Y, Misawa T. J. Polym. Sci.,
Part A: Polym. Chem. 2008; 46: 6255–6262. c) Nagashima K,
Kihara N, Iino Y. J. Polym. Sci. Part A: Polym. Chem. 2012; 50:
4230–4238. d) Nagashima K, Kihara N. Kobunshi Ronbunshu
2013; 70: 704–711. e) Oguri T, Kawahara A, Kihara N. Polymer
2016; 99: 83–89. f) Sakurai M, Kihara N, Watanabe N, Ikari Y,
Takata T. Chem. Lett. 2018; 47: 144–147.
9.
3. Conclusion
The TBSOTf-promoted N-formylation of hydrazides and
amines using DMF as the formylation agent is demonstrated.
The DMF-TBSOTf system can be used for the N-formylation of
various amines in the absence of a tertiary amine. Because of
the easy availability of DMF and TBSOTf, simple procedure,
mild reaction conditions, high chemoselectivity, and broad
scope for various acylation systems, the TBSOTf-promoted
trans-amidation can emerge as one of the most effective
methods for the N-formylation of hydrazides and amines.
Acknowledgments
We acknowledge the financial support from the MEXT-
Supported Program for the Strategic Research Foundation at
Private Universities, 2013-2017 (Creation of new fusion
materials by integration of highly ordered nano inorganic
materials and ultra-precisely controlled organic polymers).
Supplementary Material
Experimental procedure and spectral data are provided in the
Supplementary Material.
References
1.
2.
3.
Reichardt, C. In Solvent and Solvent Effects in Organic Chemistry;
Second, Revised and Enlarged Edition; VCH: Weinheim, 1988.
a) Vilsmeier A, Haack A. Chem. Ber. 1927; 60: 119-122. b) Jones
G, Stanforth SP. Org. React. 1997; 49: 1-330.
a) Lundberg H, Tinnis F, Selander N, Adolfsson H. Chem. Soc.
Rev. 2014; 43: 2714–2742. b) Pattabiraman VR, Bode JW. Nature
2011; 480: 471–479. c) Cupido T, Tulla-Puche J, Spengler J,
Albericio F. Curr. Opin.Drug Discovery Dev. 2007; 10: 768–783.
d) Deming TJ. Prog. Polym. Sci. 2007; 32: 858–875. e) Wen Y,
Xiong Y, Chang L, Huang J, Liu X, Feng X. J. Org. Chem. 2007;
72: 7715-7719. f) Jagtap SB, Tsogoeva SB. Chem.Commun. 2006:
4747–4749. g) Chen BC, Bednarz MS, Zhao R, Sundeen JE, Chen
P, Shen Z, Skoumbourdis AP, Barrish JC. Tetrahedron Lett. 2000;
41: 5453–5456. h) Iseki K, Mizuno S, Kuroki Y, Kobayashi Y.
Tetrahedron 1999; 55: 977–988. i) Humphrey JM, Chamberlin AR.
Chem. Rev. 1997; 97: 2243–2266.
4.
a) Strazzolini P, Giumanini AG, Cauci S. Tetrahedron 1990; 46:
1081-1118. b) Fife WK, Zhang ZD. J. Org. Chem. 1986; 51:
3744–3746. c) Huffman CW. J. Org. Chem. 1958; 23: 727–729. d)
Clemo GR, Swan GA. J. Chem. Soc. 1945: 603–607.
5.
6.
Buehler CA, Mackenzie CA. J. Am. Chem. Soc. 1937; 59: 421-
422.
a) Ding S, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 9226–9237. b)
Muzart J. Tetrahedron 2009; 65: 8313-8323. See also; a) Le Bras
J, Muzart J. Molecules 2018; 23: 1939/1–1939/31. b) Batra A,
Singh P, Singh KN. Eur. J. Org. Chem. 2016; 2016: 4927–4947.
a) Dine TME, Evans D, Rouden J, Blanchet J. Chem. Eur. J. 2016;
22: 5894-5898. b) Sonawane RB, Rasal NK, Bhange DS, Jagtap
SV. ChemCatChem 2018; 10: 3907-3913. c) Ma J, Zhang F,
Zhang J, Gong H. Eur. J. Org. Chem. 2018: 4940-4948. d)
Sonawane RB, Rasal NK, Bhange DS, Jagtap SV. Org. Lett. 2017;
19: 2078-2081. e) Suchý M, Elmehriki AAH, Hudson RHE. Org.
Lett. 2011; 13: 3952–3955.
7.