Tricyclic [1,2,4]Triazine 1,4-Dioxides
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 21 6865
(34) Rischin, D.; Peters, L.; O’Sullivan, B.; Giralt, J.; Yuen, K.; Trotti,
A.; Bernier, J.; Bourhis, J.; Henke, M.; Fisher, R. Phase III study of
tirapazamine, cisplatin and radiation versus cisplatin and radiation for
advanced squamous cell carcinoma of the head and neck. J. Clin.
Oncol. 2008, 26, abstract LBA6008.
(35) Rischin, D.; Hicks, R. J.; Fisher, R.; Binns, D.; Corry, J.; Porceddu,
S.; Peters, L. J. Prognostic significance of [18F]-misonidazole
positron emission tomography-detected tumor hypoxia in patients
with advanced head and neck cancer randomly assigned to
chemoradiation with or without tirapazamine: a substudy of Trans-
Tasman Radiation Oncology Group Study 98.02. J. Clin. Oncol.
2006, 24, 2098–2104.
relationships for benzotriazine di-N-oxides. Int. J. Radiat. Oncol., Biol.,
Phys. 1989, 16, 977–981.
(52) Minchinton, A. I.; Lemmon, M. J.; Tracy, M.; Pollart, D. J.; Martinez,
A. P.; Tosto, L. M.; Brown, J. M. Second-generation 1,2,4-benzotri-
azine 1,4-di-N-oxide bioreductive antitumor agents: pharmacology and
activity in vitro and in vivo. Int. J. Radiat. Oncol., Biol., Phys 1992,
22, 701–705.
(53) Kelson, A. B.; McNamara, J. P.; Pandey, A.; Ryan, K. J.; Dorie, M. J.;
McAfee, P. A.; Menke, D. R.; Brown, J. M.; Tracy, M. 1,2,4-
Benzotriazine 1,4-dioxides. An important class of hypoxic cytotoxins
with antitumor activity. Anti-Cancer Drug Des. 1998, 13, 575–592.
(54) Jiang, F.; Yang, B.; Fan, L.; Heb, Q.; Hu, Y. Synthesis and hypoxic-
cytotoxic activity of some 3-amino-1,2,4-benzotriazine-1,4-dioxide
derivatives. Bioorg. Med. Chem. Lett. 2006, 16, 4209–4213.
(55) Jiang, F.; Weng, Q.; Sheng, R.; Xia, Q.; He, Q.; Yang, B.; Hu, Y.
Synthesis, structure and hypoxic cytotoxicity of 3-amino-1,2,4-
benzotriazine-1,4-dioxide derivatives. Arch. Pharm. (Weinheim, Ger.)
2007, 340, 258–263.
(56) Cerecetto, H.; Gonzalez, M.; Onetto, S.; Saenz, P.; Ezpeleta, O.; De
Cerain, A. L.; Monge, A. 1,2,4-Triazine N-oxide derivatives: studies
as potential hypoxic cytotoxins. Part II. Arch. Pharm. (Weinheim, Ger.)
2004, 337, 247–258.
(57) Cerecetto, H.; Gonzalez, M.; Risso, M.; Saenz, P.; Olea-Azar, C.;
Bruno, A. M.; Azqueta, A.; De Cerain, A. L.; Monge, A. 1,2,4-Triazine
N-oxide derivatives: Studies as potential hypoxic cytotoxins. Part III.
Arch. Pharm. (Weinheim, Ger.) 2004, 337, 271–280.
(58) Monge, A.; Palop, J. A.; Gonzalez, M.; Martinez-Crespo, F. J.; De
Cerain, A. L.; Sainz, Y.; Narro, S.; Barker, A. J.; Hamilton, E. New
hypoxia-selective cytotoxins derived from quinoxaline 1,4-dioxides.
J. Hetercycl. Chem. 1995, 32, 1213–1217.
(59) Monge, A.; Palop, J. A.; De Cerain, A. L.; Senador, V.; Martinez-
Crespo, F. J.; Sainz, Y.; Narro, S.; Garcia, E.; de Miguel, C.; Gonzalez,
M. Hypoxia-selective agents derived from quinoxaline 1,4-di-N-oxides.
J. Med. Chem. 1995, 38, 1786–1792.
(60) Monge, A.; Martinez-Crespo, F. J.; De Cerain, A. L.; Palop, J. A.;
Narro, S.; Senador, V.; Marin, A.; Sainz, Y.; Gonzalez, M.; Hamilton,
E. Hypoxia-selective agents derived from 2-quinoxalinecarbonitrile
1,4-di-N-oxides. 2. J. Med. Chem. 1995, 38, 4488–4494.
(61) Amin, K. M.; Ismail, M. M. F.; Noaman, E.; Soliman, D. H.; Ammard,
Y. A. New quinoxaline 1,4-di-N-oxides, Part 1: Hypoxia-selective
cytotoxins and anticancer agents derived from quinoxaline1,4-di-N-
oxides. Bioorg. Med. Chem. 2006, 14, 6917-6923.
(62) Hay, M. P.; Denny, W. A. A new and versatile synthesis of 3-alkyl-
1,2,4-benzotriazine-1,4-dioxides: preparation of the bioreductive cy-
totoxins SR4895 and SR4941. Tetrahedron Lett. 2002, 43, 9569–9571.
(63) Pchalek, K.; Hay, M. P. Stille Coupling Reactions in the Synthesis of
Hypoxia-Selective 3-Alkyl-1,2,4-Benzotriazine 1,4-Dioxide Anticancer
Agents. J. Org. Chem. 2006, 71, 6530–6535.
(64) Anderson, R. F.; Denny, W. A.; Li, W.; Packer, J. E.; Tercel, M.;
Wilson, W. R. Pulse radiolysis studies on the fragmentation of
arylmethyl quaternary nitrogen mustards upon their one-electron
reduction in aqueous solution. J. Phys. Chem. A 1997, 101, 9704–
9709.
(65) Wardman, P. Reduction potentials of one-electron couples involving
free radicals in aqueous solution. J. Phys. Chem. Ref. Data 1989, 18,
1637–1755.
(66) Siim, B. G.; Hicks, K. O.; Pullen, S. M.; van Zijl, P. L.; Denny, W. A.;
Wilson, W. R. Comparison of aromatic and tertiary amine N-oxides
of acridine DNA intercalators as bioreductive drugsscytotoxicity,
DNA binding, cellular uptake, and metabolism. Biochem. Pharmacol.
2000, 60, 969–978.
(67) Pruijn, F. B.; Patel, K.; Hay, M. P.; Wilson, W. R.; Hicks, K. O.
Prediction of Tumour Tissue Diffusion Coefficients of Hypoxia-
Activated Prodrugs from Physicochemical Parameters. Aust. J. Chem.
2008, 61, 687–693.
(68) Wang, M.; Roberts, D. L.; Paschke, R.; Shea, T. M.; Masters, B. S. S.;
Kim, J-J. P. Three-dimensional structure of NADPH-cytochrome
P450reductase: prototype for FMN- and FAD-containing enzymes.
Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 8411–8416.
(69) Zhao, Q.; Modi, S.; Smith, G.; Paine, M.; Mcdonagh, P. D.; Wolf,
C. R.; Tew, D.; Lian, L.-Y.; Roberts, G. C. K.; Driessen, H. P. C.
Crystal structure of the FMN-binding domain of human cytochrome
P450 reductase at 1.93 Å resolution. Protein Sci. 1999, 8, 298–306.
(36) Peters, L.; Rischin, D.; Fisher, R.; Corry, J.; Hicks, R. Identification
and therapeutic targeting of hypoxia in H&N cancer. Int. Congr.
Radiat. Res. 2007,
(37) Rischin, D.; Peters, L.; Fisher, R.; Macann, A.; Denham, J.; Poulsen,
M.; Jackson, M.; Kenny, L.; Penniment, M.; Corry, J.; Lamb, D.;
McClure, B. Tirapazamine, cisplatin, and radiation versus fluorouracil,
cisplatin, and radiation in patients with locally advanced head and
neck cancer: a randomized phase II trial of the Trans-Tasman Radiation
Oncology Group (TROG 98.02). J. Clin. Oncol. 2005, 23, 79–87.
(38) Durand, R. E.; Olive, P. L. Physiologic and cytotoxic effects of
tirapazamine in tumor-bearing mice. Radiat. Oncol. InVest. 1997, 5,
213–219.
(39) Durand, R. E.; Olive, P. L. Evaluation of bioreductive drugs in multicell
spheroids. Int. J. Radiat. Oncol, Biol., Phys. 1992, 22, 689–692.
(40) Hicks, K. O.; Fleming, Y.; Siim, B. G.; Koch, C. J.; Wilson, W. R.
Extravascular diffusion of tirapazamine: effect of metabolic consump-
tion assessed using the multicellular layer model. Int. J. Radiat. Oncol.,
Biol., Phys. 1998, 42, 641–649.
(41) Kyle, A. H.; Minchinton, A. I. Measurement of delivery and
metabolism of tirapazamine to tumour tissue using the multilayered
cell culture model. Cancer Chemother. Pharmacol. 1999, 43, 213–
220.
(42) Baguley, B. C.; Hicks, K. O.; Wilson, W. R. Tumour cell cultures in
drug development. In Anticancer Drug DeVelopment; Baguley, B. C.;
Kerr, D. J., Eds.; Academic Press: San Diego, 2002; pp 269-284.
(43) Hicks, K. O.; Pruijn, F. B.; Sturman, J. R.; Denny, W. A.; Wilson,
W. R. Multicellular resistance to tirapazamine is due to restricted
extravascular transport: a pharmacokinetic/pharmacodynamic study in
multicellular layers. Cancer Res. 2003, 63, 5970–5977.
(44) Hicks, K. O.; Siim, B. G.; Pruijn, F. B.; Wilson, W. R. Oxygen
dependence of the metabolic activation and cytotoxicity of tira-
pazamine: implications for extravascular transport and activity in
tumors. Radiat. Res. 2004, 161, 656–666.
(45) Hicks, K. O.; Pruijn, F. B.; Secomb, T. W.; Hay, M. P.; Hsu, R.;
Brown, J. M.; Denny, W. A.; Dewhirst, M. W.; Wilson, W. R. Use of
three-dimensional tissue cultures to model extravascular transport and
predict in vivo activity of hypoxia-targeted anticancer drugs. J. Natl.
Cancer Inst. 2006, 98, 1118–1128.
(46) Hicks, K. O.; Myint, H.; Patterson, A. V.; Pruijn, F. B.; Siim, B. G.;
Patel, K.; Wilson, W. R. Oxygen dependence and extravascular
transport of hypoxia-activated prodrugs: comparison of the dinitroben-
zamide mustard PR-104A and tirapazamine. Int. J. Radiat. Oncol.,
Biol., Phys. 2007, 69, 560–571.
(47) Pruijn, F. B.; Sturman, J.; Liyanage, S.; Hicks, K. O.; Hay, M. P.;
Wilson, W. R. Extravascular transport of drugs in tumor tissue: effect
of lipophilicity on diffusion of tirapazamine analogues in multicellular
layer cultures. J. Med. Chem. 2005, 48, 1079–1087.
(48) Hay, M. P.; Hicks, K. O.; Pruijn, F. B.; Pchalek, K.; Siim, B. G.;
Wilson, W. R.; Denny, W. A. Pharmacokinetic/pharmacodynamic
model-guided identification of hypoxia-selective 1,2,4-benzotriazine
1,4-dioxides with antitumor activity: the role of extravascular transport.
J. Med. Chem. 2007, 50, 6392–6404.
(49) Hay, M. P.; Pchalek, K.; Pruijn, F. B.; Hicks, K. O.; Siim, B. G.;
Anderson, R. R.; Shinde, S. S.; Phillips, V.; Denny, W. A.; Wilson,
W. R. Hypoxia-selective 3-alkyl 1,2,4-benzotriazine 1,4-dioxides: the
influence of hydrogen bond donors on extravascular transport and
antitumor activity. J. Med. Chem. 2007, 50, 6654–6664.
(50) Hay, M. P.; Gamage, S. A.; Kovacs, M. S.; Pruijn, F. B.; Anderson,
R. F.; Patterson, A. V.; Wilson, W. R.; Brown, J. M.; Denny, W. A.
Structure-activity relationships of 1,2,4-benzotriazine 1,4-dioxides as
hypoxia-selective analogues of tirapazamine. J. Med. Chem. 2003, 46,
169–182.
(51) Zeman, E. M.; Baker, M. A.; Lemmon, M. J.; Pearson, C. I.; Adams,
J. A.; Brown, J. M.; Lee, W. W.; Tracy, M. Structure-activity
JM800967H