In summary, a simple and efficient strategy for the synthesis of primary α-ketoamides was developed from hydrocinnamaldehydes
using Cu-Catalyzed aerobic oxidative cleavage. The exclusivity of this strategy lies in the use of hydrocinnamaldehydes as a single
substrate, which directly converts into primary α-ketoamides via muti-oxidation using O2 as oxidation. The advantages of this
methodology include high-efficiency transformation, straightforward operation, mild reacting condition and little contamination to the
environment. Further synthetic application of this cleavage method is currently in progress in our laboratory.
Acknowledgments
The research was supported by the National Key Research and Development Program of China (2016YFB0301501), the National
Science Foundation of China (Grant No. 21776130 & 21878145), the Jiangsu Synergetic Innovation Center for Advanced Bio-
Manufacture (No. X1821 and X1802) and Postgraduate Research & Practice Innovation Program of Jiangsu Province.
References and notes
1.
2.
(a) Mäki-Arvela, P.; Hájek, J.; Salmi, T.; Murzin, D.Y. Appl. Catal. A. 2005, 292, 49. (b) Castelijns, A.M.C.F.; Hogeweg, J. M.; van Nispen, S.P.J.M.
PCT Int. Appl. WO 9611898, 1996, 25, 14.
For reviews on the cleavage of C–C bonds, see: (a) Klein, J.E.M.N.; Plietker, B. Org. Biomol. Chem. 2013, 11, 1271. (b) Seiser T.; Cramer, N. Org.
Biomol. Chem. 2009, 7, 2835. (c) Tobisu, M.; Kinuta, H.; Kita, Y.; Re´mond E.; Chatani, N. J. Am. Chem. Soc. 2012, 134, 115. (e) Horino, Y. Angew.
Chem. Int. Ed. 2007, 46, 2144. (f) Gooßen, L.J.; Rodrı´guez N.; Gooßen, K. Angew. Chem. Int. Ed. 2008, 47, 3100. (g) Zhang, C.; Xu, Z.; Shen, T.;
Wu, G.; Zhang, L.; Jiao, N. Org. Lett. 2012, 14, 2362.
3.
4.
For selected examples, see: (a) Bowring, M.A.; Bergman, R.G.; Tilley, T.D. J. Am. Chem. Soc. 2013, 135, 13121. (b) Ziadi, A.; Correa, A.; Martin, R.
Chem. Commun. 2013, 49, 4286. (c) Li, G.-X.; Wu, L.; Lv, G.; Liu, H.-X.; Fu, Q.-Q.; Zhang, X.-M.; Tang, Z. Chem. Commun. 2014, 50, 6246. (d)
Fang, X.-J.; Yu, P.; Cerai, G.-P.; Morandi, B. Chem. Eur. J. 2016, 22, 15629. (e) Shen, T.; Zhang, Y.-Q.; Liang, Y.-F.; Jiao, N. J. Am. Chem. Soc.
2016, 138, 13147. (f) Xu, X.-Z.; Li, B.-N.; Zhao, Y.-W.; Song, Q.-L. Org. Chem. Front. 2017, 4, 331. (g) Jiang, Y.; Deng, J.-D.; Wang, H.-H.; Zou,
J.-X.; Wang, Y.-Q.; Chen, J.-H.; Zhu, L.-Q.; Zhang, H.-H.; Peng, X.; Wang, Z. Chem. Commun. 2018, 54, 802. (h) Zhou, P.-J.; Li, C.-K.; Zhou, S.-F.;
Shoberu, A.; Zou, J.-P. Org. Biomol. Chem. 2017, 15, 2629. (i) Park, H.S.; Kim, D.S.; Jun, C.H. ACS Catal. 2015, 5, 397. (j) Lipp, B.; Lipp, A.;
Detert, H.; Opatz, T. Org. Lett. 2017, 19, 2054. (k) Jia, K.-F.; Pan, Y.; Chen, Y.-Y. Angew. Chem. Int. Ed. 2017, 56, 2478. (l) Saidalimu, I.; Suzuki, S.;
Tokunaga, E.; Shibata, N. Chem. Sci. 2016, 7, 2106.
(a) Liu, L.; Ye, X.-P.; Bozell, J.-J. ChemSusChem. 2012, 5, 1162. (b) Bandyopadhyay; Basak, A.; Mater, G.C. Sci. Technol. 2007, 23, 307. (c) Khan,
M.K.; Sarkar, B.; Zeb, H.; Yi, M.; Kim, J. Fuel. 2017, 199, 135.
5.
6.
7.
(a) Wu, K.; Song, C.; Cui, D.-M. Chin. J. Org. Chem. 2017, 37, 586. (b) Feng, C.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
(a) Park, Y.J.; Park J. W.; Jun, C. H. Acc. Chem. Res. 2008, 41, 222. (b) Masarwa A.; Marek, I. Chem. Eur. J. 2010, 16, 9712.
(a) Le Boisselier, V.; Coin, C.; Postel, M.; DuÇach, E. Tetrahedron. 1995, 51, 4991; (b) Kuninobu, Y.; Uesugi, T.; Kawata, A.; Takai, K. Angew.
Chem. Int. Ed. 2011, 123, 10590. (c) Arisawa, M.; Kuwajima, M.; Toriyama, F.; Li, G.; Yamaguchi, M. Org. Lett. 2012, 14, 3804. (d) Paria, S.;
Halder, P.; Paine, T. K. Angew. Chem. Int. Ed. 2012, 124, 6299. (e) Wang, Z.-F.; Li, L.; Huang, Y. J. Am. Chem. Soc. 2014, 136, 12233.
(a) Zhang, L.; Bi, X.; Guan, X.; Li, X.; Liu, Q.; Barry, B. D.; Liao, P. Angew. Chem. Int. Ed. 2013, 52, 11303; (b) Song, R.-J.; Liu, Y.; Hu, R.-X.; Liu,
Y.-Y.; Wu, J.-C.; Yang, X.-H.; Li, J.-H. Adv. Synth. Catal. 2011, 353, 1467.
8.
9.
(a) Zhang, C.; Xu, Z.; Shen, T.; Wu, G.; Zhang, L.; Jiao, N. Org. Lett. 2012, 14, 2362. (b) Kuninobu, Y.; Uesugi, T.; Kawata, A.; Takai, K. Angew.
Chem. Int. Ed. 2011, 50, 10406.
10. (a) Arisawa, M.; Kuwajima, M.; Toriyama, F.; Li, G.; Yamaguchi, M. Org. Lett. 2012, 14, 3804. (b) Fristrup, P.; Kreis, M.; Palmelund, A.; Norrby,
P.; Madsen, R. J. Am. Chem. Soc. 2008, 130, 5206.
11. (a) Biswas, S.; Maiti, S.; Jana, U. Eur. J. Org. Chem. 2010, 15, 2861. (b) Huang, L.-H.; Cheng, K.; Yao, B. -B.; Xie, Y.-J.; Zhang, Y.-H. J. Org.
Chem. 2011, 76, 5732.
12. (a) Kesharwani, T.; Verma, A. K.; Emrich, D.; Ward, J. A.; Larock, R. C. Org. Lett. 2009, 11, 2591. (b) Li, C.; Li, P.; Yang, J.; Wang, L. Chem.
Commun. 2012, 48, 4214.
13. Sun, H.-N.; Yang, C.; Gao, F.; Li, Z.; Xia, W. J. Org. Lett. 2013, 15, 624.
14. Wang, Z.-F.; Li, L.; Huang, Y. J. Am. Chem. Soc. 2014, 136, 12233.
15. Hu, G.; Ramakumar, K.; Brenner-Moy, S. E. J. Org. Chem. 2017, 82, 6972.
16. (a) Zhang, L.; Bi, X.; Guan, X.; Li, X.; Liu, Q.; Barry, B. D.; Liao, P. Angew. Chem. Int. Ed. 2013, 52, 11303; (b) Kiyooka, S.H.; Fujimoto, M.;
Mishima, S.; Kobayashi, K.; Uddin, M.; Fujio, M. Tetrahedron Lett. 2003, 44, 927.
17. Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. ACS Catal. 2011, 1, 839.
18. Du, F.-T.; Ji, J.-X. Chem. Sci. 2012, 3, 460.
19. (a) Stergiou, A.; Bariotaki, A.; Kalaitzakis, D.; Smonou, I. J. Org. Chem. 2013, 78, 7270. (b) Li, Z.; Yin, J.-J.; Wen, G.; Li, T.-P.; Shen, X.-L. RSC
Adv. 2014, 4, 32299. (c) Huang, L.; Cheng, K.; Yao, B.; Xie, Y.; Zhang, Y. J. Org. Chem. 2011, 76, 5732. (d) Zhang, C.; Feng, P.; Jiao, N. J. Am.
Chem. Soc. 2013, 135, 15257.
20. General procedure for the synthesis of 3 (3aa as an example):
Hydrocinnamaldehyde 1a (134 mg, 1 mmol) and morpholine 2a (174 mg, 2 mmol) were dissolved in DMF (2 mL). Then, Cu(OAc)2 (36mg, 0.2mmol) was
added to the reaction mixture. The reaction mixture was degassed 3 times by O2 and stirred under O2 balloon in a preheated oil batch at 80℃ for 6h. After
cooling down to room temperature, the reaction mixture was diluted with H2O (30 mL) and extracted by ethyl acetate (30 mL) or dichloromethane (30 mL).
The separated organic layers were dried over by anhydrous Na2SO4 and filtered. The filtrate was concentrated under reduced pressure and the residue was
chromatographed on silica gel using hexane/ethyl acetate or dichloromethane/methanol to afford the desired product 3aa (85% yield).
Conflict of interest statement
The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or
associative interest that represents a conflict of interest in connection with the work submitted.
A Cu-catalyzed aerobic oxidative cleavage method is developed.
It involves two C(sp3)–C(sp3) bonds cleavage and C–N bond formation process.
This reaction features simple starting materials and a broad substrate scope.
Based on various control experiments, a reasonable mechanism is proposed.
Conflict of interest statement