Conversion of a d-Sugar into 2-Deoxy-l-ribitol
camone, M. Capobinaco, A. Carcuro, F. Colonna, S. Lotti, A.
Garbesi, J. Med. Chem. 1992, 35, 4214–4220.
70% (over two steps from 6, Scheme 5). The stereochemis-
try of 15 was confirmed by X-ray crystal structure analysis.
The obtained crystal structure indicated that product 7 was
indeed an acyclic form of 2-deoxy-l-ribose with a (3R,4S)
stereochemistry (Figure 1).
[3] From l-sugars: a) M. L. Sznaidman, M. R. Almond, P. Amir,
Nucleosides Nucleotides 2002, 21, 155–163; b) M. E. Jung, Y.
Xu, Org. Lett. 1999, 1, 1517–1519; c) W. Zhang, K. S. Ramas-
amy, D. R. Averett, Nucleosides Nucleotides 1999, 18, 2357–
2365; d) E. Moyroud, P. Strazewski, Tetrahedron 1999, 55,
1277–1284; e) J. Du, Y. Choi, K. Lee, B. K. Chun, J. H. Hong,
C. K. Chu, Nucleosides Nucleotides 1999, 18, 187–195.
[4] For syntheses from d-sugars, see: a) Q. Ji, M. Pang, J. Han, S.
Feng, X. Zhang, Y. Ma, J. Meng, Synlett 2006, 15, 2498–2500;
b) M. E. Jung, Y. Xu, Tetrahedron Lett. 1997, 38, 4199–4202;
c) M. E. Jung, C. J. Nichols, O. Kretscik, Y. Xu, Nucleosides
Nucleotides 1999, 18, 541–546.
[5] For syntheses from other non-sugar materials, see: a) B. H.
Cho, J. H. Kim, H. B. Jeon, K. S. Kim, Tetrahedron 2005, 61,
4341–4346; b) M. E. Jung, C. J. Nichols, Tetrahedron Lett.
1998, 39, 4615–4618; c) F. Fazio, M. P. Schneider, Tetrahedron:
Asymmetry 2000, 11, 1869–1876; d) F. Fazio, M. P. Schneider,
Tetrahedron: Asymmetry 2001, 12, 2143–2145.
[6] a) D. P. Curran, Synthesis 1988, 417–439; b) C. P. Jasperse,
D. P. Curran, T. L. Fevig, Chem. Rev. 1991, 91, 1237–1286; c)
M. Ramaiah, Tetrahedron 1987, 43, 3541–3676.
[7] a) D. P. Curran, H. Liu, J. Org. Chem. 1991, 56, 3463–3465; b)
D. P. Curran, U. Diederichsen, M. Palovich, J. Am. Chem. Soc.
1997, 119, 4797–4804; c) S. Kim, S. Y. Jon, Chem. Commun.
1996, 1355–1336; d) S. Kim, S. Y. Jon, Chem. Commun. 1998,
815–816.
[8] a) Y.-M. Tsai, C. D. Cherng, Tetrahedron Lett. 1991, 32, 3515–
3518; b) Y.-M. Tsai, H.-C. Hieh, J.-S. Pan, D.-D. Hsiao, Chem.
Commun. 1996, 2469–2470; c) C.-H. Huang, S.-Y. Chang, N.-
S. Wang, Y.-M. Tsai, J. Org. Chem. 2001, 66, 8983–8991.
[9] a) R. Tsang, B. Fraser-Reid, J. Am. Chem. Soc. 1986, 108,
8102–8104; b) B.-W. A. Yeung, R. Alonso, G. D. Vite, B. Fra-
ser-Reid, J. Carbohydr. Chem. 1989, 8, 413–427; c) M. A. Ciu-
folini, S. Zhu, J. Org. Chem. 1998, 63, 1668–1675.
[10] V. Yadav, D. Argawal, Chem. Commun. 2007, 5232–5234.
[11] C.-C. Chang, Y.-H. Kuo, Y.-M. Tsai, Tetrahedron Lett. 2009,
50, 3805–3808.
Conclusions
In summary, a unique and highly efficient radical process
(complete within minutes) was developed to prepare 2-de-
oxy-l-ribitol. Radical cyclization followed by fragmentation
of an acyclic carbohydrate system gave exclusively the prod-
uct with carbonyl translocation. This is one of the few re-
ports in which radical cyclization of an α-oxy carbonyl
compound involves a 1,4-CHO migration without any as-
sistance, such as the need for a rigid system or acceleration
assisted by the geminal dialkyl effect. Moreover, this radical
process could be applied to the field of carbohydrate chem-
istry to transform a d-sugar derivative into a 2-deoxy-l-
sugar in a single radical reaction. Application of this unique
radical process to give other rare l-sugars from inexpensive
d-sugars is currently underway.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures; characterization data; 1H–13C/
DEPT NMR spectra of 2–6, 8–9, and 15; 1H NMR spectrum of 7;
X-ray data of 15.
CCDC-895176 (for 15) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
[12] J. A. Kerr, in: CRC Handbook of Chemistry and Physics, CRC,
Boca Raton, FL, 1986, p. F-178.
[13] M. E. Jung, S. W. T. Choe, Tetrahedron Lett. 1993, 34, 6247–
6250.
Acknowledgments
[14] When a reaction time of 5 min was used, the ratio of product/
starting material (7/6) was observed to be 1:0.15 (an estimated
13% of the starting material was not consumed).
[15] C. H. Yoder, J. C. Otter, A. Grushow, T. F. Ganunis, B. G. En-
der, A. I. Zafar, J. N. Spencer, J. Organomet. Chem. 1990, 385,
33–37.
The authors thank the National Science Council (NSC), Taiwan,
and the Department of Chemistry, Fu Jen Catholic University for
financial support. N.-Y. H. held a Department of Chemistry Mas-
ter Student Fellowship.
[16] C. Chatgilialoglu, Chem. Eur. J. 2008, 14, 2310–2320.
[17] a) A. L. J. Beckwith, B. P. Hay, J. Am. Chem. Soc. 1989, 111,
2674–2681; b) A. L. J. Beckwith, K. D. Raner, J. Org. Chem.
1992, 57, 4954–4962.
[18] C. Chatgilialoglu, D. Crich, M. Komatsu, I. Ryu, Chem. Rev.
1999, 99, 1991–2070.
[19] A. Tauss, A. J. Steiner, A. E. Stütz, C. A. Tarling, S. G. Withers,
T. M. Wrodnigg, Tetrahedron: Asymmetry 2006, 17, 234–239.
Received: November 7, 2012
[1] D. D’Alonzo, A. Guaragna, G. Palumbo, Chem. Biodiversity
2011, 8, 373–413.
[2] a) Z.-D. Shi, B.-H. Yang, Y.-L. Wu, Tetrahedron 2002, 58,
3287–3296; b) S. B. Pai, S.-H. Liu, Y.-L. Zhu, C. K. Chu, Y.-
C. Cheng, Antimicrob. Agents Chemother. 1996, 40, 380–386; c)
C. K. Chu, T. W. Ma, K. Shanmuganathan, C. G. Wang, Y. J.
Xiang, S. B. Pai, G.-Q. Yao, J.-P. Sommaclossi, Y.-C. Cheng,
Antimicrob. Agents Chemother. 1995, 39, 979–981; d) S. Spad-
ari, G. Maga, F. Focher, G. Ciarroocchi, R. Manservigi, F. Ar-
Published Online: December 20, 2012
Eur. J. Org. Chem. 2013, 658–661
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
661