ChemComm
Communication
This work was supported by Ministry of Science and Technology
(2016YFA0204100), National Natural Science Foundation of China
(21672178), ‘‘Thousand Youth Talents Plan’’, and Fundamental
Research Funds for the Central Universities.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) C. L. Zhu, Z. B. Liu, G. Y. Chen, K. Zhang and H. F. Ding, Angew.
Chem., Int. Ed., 2015, 54, 879–882; (b) H. Yokoe, C. Mitsuhashi,
Y. Matsuoka, T. Yoshimura, M. Yoshida and K. Shishido, J. Am. Chem.
Soc., 2011, 133, 8854–8857; (c) P. Chen, L. Cao, W. Tian, X. Wang and
C. Li, Chem. Commun., 2010, 46, 8436–8438; (d) J. Magolan and
M. A. Kerr, Org. Lett., 2006, 8, 4561–4564; (e) D. R. Artis, I.-S. Cho
and J. M. Muchowski, Can. J. Chem., 1992, 70, 1838–1842.
2 (a) B. B. Snider, Chem. Rev., 1996, 96, 339–363; (b) V. Nair and
A. Deepthi, Chem. Rev., 2007, 107, 1862–1891; (c) M. Mondal and
U. Bora, RSC Adv., 2013, 3, 18716–18754; (d) V. Nair and A. Deepthi,
Tetrahedron, 2009, 65, 10745–10755.
3 (a) J. E. M. N. Klein, A. Perry, D. S. Pugh and R. J. K. Taylor, Org. Lett.,
2010, 12, 3446–3449; (b) T. E. Hurst, R. M. Gorman, P. Drouhin,
A. Perry and R. J. K. Taylor, Chem. – Eur. J., 2014, 20, 14063–14073.
4 (a) D. Fernandez Reina, A. Ruffoni, Y. S. S. Al-Faiyz, J. J. Douglas,
N. S. Sheikh and D. Leonori, ACS Catal., 2017, 7, 4126–4130; (b) L. Wang,
W. Huang, R. Li, D. Gehrig, P. W. Blom, K. Landfester and K. A. Zhang,
Angew. Chem., Int. Ed., 2016, 55, 9783–9787; (c) X. H. Ouyang, R. J. Song,
M. Hu, Y. Yang and J. H. Li, Angew. Chem., Int. Ed., 2016, 55, 3187–3191;
(d) J. W. Tucker, J. M. R. Narayanam, S. W. Krabbe and C. R. J.
Stephenson, Org. Lett., 2010, 12, 368–371.
Scheme 3 Scope of 3,4-dihydro-1H-quinolin-2-one synthesis. Reaction
conditions: undivided cell, constant current = 10 mA, substrate (0.3 mmol),
THF (3 mL), MeOH (3 mL), argon, reflux, 2 h (2.5 F molꢀ1). a Isolated yield.
b Na2CO3 (0.3 mmol), nBu4NBF4 (0.9 mmol), THF (5 mL), MeOH (1 mL).
5 (a) A. Perry and R. J. K. Taylor, Chem. Commun., 2009, 3249–3251;
(b) D. S. Pugh and R. J. K. Taylor, Org. Synth., 2012, 89, 438–449;
(c) S. Ghosh, S. De, B. N. Kakde, S. Bhunia, A. Adhikary and A. Bisai,
Org. Lett., 2012, 14, 5864–5867; (d) S. Bhunia, S. Ghosh, D. Dey and
A. Bisai, Org. Lett., 2013, 15, 2426–2429; (e) Z. Yu, L. Ma and W. Yu,
Synlett, 2010, 2607–2610; ( f ) Y. X. Jia and E. P. Kundig, Angew.
Chem., Int. Ed., 2009, 48, 1636–1639; (g) J. R. Donald, R. J. K. Taylor
and W. F. Petersen, J. Org. Chem., 2017, 82, 11288–11294.
6 R. Shundo, I. Nishiguchi, Y. Matsubara and T. Hirashima, Tetra-
hedron, 1991, 47, 831–840.
7 Selected recent reviews on organic electrosynthesis: (a) R. Francke
and R. D. Little, Chem. Soc. Rev., 2014, 43, 2492–2521; (b) J. Yoshida,
K. Kataoka, R. Horcajada and A. Nagaki, Chem. Rev., 2008, 108,
2265–2299; (c) M. Yan, Y. Kawamata and P. S. Baran, Chem. Rev.,
2017, 117, 13230–13319; (d) Y. Jiang, K. Xu and C. Zeng, Chem. Rev.,
2017, DOI: 10.1021/acs.chemrev.7b00271; (e) A. Wiebe, T. Gieshoff,
S. Mohle, E. Rodrigo, M. Zirbes and S. R. Waldvogel, Angew. Chem.,
Int. Ed., 2018, DOI: 10.1002/anie.201711060; ( f ) S. Tang, Y. Liu and
A. Lei, Chem, 2018, 4, 27–45; (g) Q. L. Yang, P. Fang and T. S. Mei, Chin.
J. Chem., 2018, 36, 338–352. Selected recent examples of electrochemical
C–H/C–H cross-coupling reactions: (h) S. Tang, X. Gao and A. Lei, Chem.
Commun., 2017, 53, 3354–3356; (i) A. Wiebe, S. Lips, D. Schollmeyer,
R. Franke and S. R. Waldvogel, Angew. Chem., Int. Ed., 2017, 56,
14727–14731; ( j) L. Schulz, M. Enders, B. Elsler, D. Schollmeyer,
K. M. Dyballa, R. Franke and S. R. Waldvogel, Angew. Chem., Int. Ed.,
2017, 56, 4877–4881; (k) R. Hayashi, A. Shimizu and J. Yoshida, J. Am.
Scheme 4 Proposed mechanism.
The carbanion I is then oxidized by the anodically generated
Cp2Fe+ through single electron transfer (SET) to afford the
C-radical II and regenerate Cp2Fe.8a,10 The cyclization and
rearomatization of II led to the final oxindole 2. Considering
that only the carbanion I but not the neutral 1 can be oxidized
by Cp2Fe+, the role of the added Lewis acid Y(OTf)3 and LiOMe
is most likely to help drive the acid–base equilibrium to the
side of I. In comparison, these additives are not necessary for
a-alkyl malonic esters (pKa = 13.1 in H2O), which is more
acidic than the malonate amides such as 1 as well as methanol
(pKa = 15.5 in H2O).
In summary, we have developed Cp2Fe-catalyzed electro-
chemical methods for the generation of C-centered radicals
from the a-alkyl-substituted 1,3-dicarbonyl compounds via C–H
bond cleavage. This radical generation protocol enables the
development of intramolecular C–H/Ar–H cross-coupling
reactions.
¨
¨
Chem. Soc., 2016, 138, 8400–8403; (l) P. Rose, S. Emge, C. A. Konig and
G. Hilt, Adv. Synth. Catal., 2017, 359, 1359–1372; (m) C. Amatore,
C. Cammoun and A. Jutand, Adv. Synth. Catal., 2007, 349, 292–296;
(n) N. Fu, L. Li, Q. Yang and S. Luo, Org. Lett., 2017, 19, 2122–2125.
8 (a) Z.-J. Wu and H.-C. Xu, Angew. Chem., Int. Ed., 2017, 56,
4734–4738; (b) L. Zhu, P. Xiong, Z. Y. Mao, Y. H. Wang, X. Yan,
X. Lu and H.-C. Xu, Angew. Chem., Int. Ed., 2016, 55, 2226–2229;
(c) P. Xiong, H.-H. Xu, J. Song and H.-C. Xu, J. Am. Chem. Soc., 2018,
140, 2460–2464; (d) H.-B. Zhao, Z.-W. Hou, Z.-J. Liu, Z.-F. Zhou,
J. Song and H.-C. Xu, Angew. Chem., Int. Ed., 2017, 56, 587–590;
(e) X.-Y. Qian, S.-Q. Li, J. Song and H.-C. Xu, ACS Catal., 2017, 7,
2730–2734; ( f ) Z.-W. Hou, Z.-Y. Mao, Y. Y. Melcamu, X. Lu and
H.-C. Xu, Angew. Chem., Int. Ed., 2018, 57, 1636–1639; (g) H.-B. Zhao,
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun.