Aldose Reductase Inhibitors
J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 8 1427
(14) Szabo-Pusztay, K.; Szabo, L. A Simple General Method for the
Oxidation of Indoles to Oxindoles. Synthesis 1979, 276-277.
(15) Wilson, D. K.; Tarle, I.; Petrash, J . M.; Quiocho, F. A. Refined
1.8 Å Structure of Human Aldose Reductase Complexed with
the Potent Inhibitor Zopolrestat. Proc. Natl. Acad. Sci. U.S.A.
1993, 90, 9847-9851.
(16) Pietra, S. Indole Derivatives. Farmaco 1957, 12, 946-953.
(17) Harley-Mason, J .; Ingleby, R. F. J . Hydroxytryptamines. Part
IV. Synthesis and Reactions of 2-3′-Oxindolylethylamines. J .
Chem. Soc. 1958, 3639-3642.
enantiomers placed the negatively charged carboxylate group
of 55 in the anionic binding site of ALR2 lined by residues
Tyr48, His110, and Trp111 so as to make a network of
hydrogen bonds. From this cluster of structures, we selected
the top-scoring orientation of the two enantiomers in which
the p-tolyl ring was located in the same hydrophobic pocket
occupied by the benzothiazole ring of zopolrestat in the crystal
structure.
The parameters of the ligandwere set consistently to the
Cornell et al. force field: missing bond and angle parameters
were assigned on the basis of analogy with known parameters
in the database and calibrated to reproduce the AM1 optimized
geometry. The complex was solvated by the addition of 217
TIP3P water molecules53 within 20 Å of the inhibitor. After
the protein, NADP+ and the inhibitor were frozen, and the
water molecules alone were minimized (20 000 cycles or 0.1
kcal/mol rms deviation in energy) and equilibrated for 5 ps in
a constant temperature (300 K) bath. SANDER energy mini-
mization (<0.01 kcal/mol rms deviation) and 200 ps MD
simulation of the entire system followed this. During dynamics,
the positional constraints on the protein backbone were
gradually reduced from 5 to 0.1 kcal/Å2/mol. The SHAKE was
used to constrain bonds involving hydrogen. A 1-fs time step
was used along with a nonbonded cutoff of 8 Å at 1 atm of
constant pressure. The temperature was maintained at 300
K using Berendsen’s algorithm54 with a coupling constant of
0.2 ps. Four snapshots, extracted each 25 ps from the last 100
ps MD simulation, were found to be very similar in terms of
rms deviation. An average structure was calculated from the
last 100 ps trajectory and energy-minimized using the steepest
descent and conjugate gradient methods available within the
SANDER module of AMBER as specified above.
(18) Allen, F. H.; Bellard, S.; Brice, M. D.; Cartwright, B. A.;
Doubleday: A.; Higgs, H.; Hummelink, T.; Hummelink-Peters,
B. G.; Kennard, O.; Motherwell, W. D. S.; Rodgers, J . R.; Watson,
D. G. The Cambridge Crystallographic Data Centre: Computer-
Based Search, Retrieval, Analysis and Display of Information.
Acta Crystallogr. 1979, B35, 2331-2339.
(19) Morales-Rios, M. S.; Bucio-Vasquez, Ma. A.; J oseph-Nathan, P.
Novel Oxidations of 1,3-Disubstituted Indoles. J . Heterocycl.
Chem. 1993, 30, 953-956.
(20) Daisley, R. W.; Walker, J . Substituted Oxindoles. Pt VII.
Oxindole Analogues of Tryptamine and its Derivatives. Eur. J .
Med. Chem. 1979, 14, 47-52.
(21) Tacconi, G.; Righetti, P. P.; Desimoni, G. Preparation of N-
Substituted Isatins. J . Prakt. Chem. 1973, 315, 339-344.
(22) De Ruiter, J .; Brubaker, A. N.; Garner, M. A.; Barksdale, J . M.;
Mayfield, C. A. In Vitro Aldose Reductase Inhibitory Activity of
Substituted N-benzenesulfonylglycine Derivatives J . Pharm. Sci.
1987, 76, 149-152.
(23) Mayfield, C. A.; De Ruiter, J . Novel Inhibitors of Rat Lens Aldose
Reductase: N-[[(substituted amino)phenyl]sulfonyl]glycines. J .
Med. Chem. 1987, 30, 1595-1598.
(24) Mu¨ller, P.; Hockwin, O.; Ohrloff, C. Comparison of Aldose
Reductase Inhibitors by Determination of IC50 with Bovine and
Rat Lens Extracts. Ophthalmic Res. 1985, 17, 115-119.
(25) Hockwin, O.; Mu¨ller, P.; Krolczyk, J .; McCue, B. A.; Mayer, P.
R. Determination of AL01576 Concentration In Rat Lenses and
Plasma by Bioassay for Aldose Reductase Activity Measure-
ments. Ophthalmic Res. 1989, 21, 285-291.
(26) Hu, T.; Merola, L. O.; Kuwabara, T.; Kinoshita, J . H. Prevention
and Reversal of Galactose Cataract in Rats with Topical Sorbinil.
Invest. Ophthalmol. Vis. Sci. 1984, 25, 603-605.
(27) Sestanj, K.; Bellini, F.; Fung, S.; Abraham, N.; Treasurywala,
A.; Humber, L.; Simard-Duquesne, N.; Dvornik, D. N-[5-(Trif-
luoromethyl)-6-methoxy-1-naphthalenyl]thioxomethyl]-N-meth-
ylglycine (Tolrestat), a Potent, Orally Active Aldose Reductase
Inhibitor. J . Med. Chem. 1984, 27, 255-256.
(28) Banditelli, S.; Boldrini, E.; Vilardo, G. P.; Cecconi, I.; Cappiello,
M.; Dal Monte, M.; Marini, I.; Del Corso, A.; Mura, U. A New
Approach Against Sugar Cataract Through Aldose Reductase
Inhibitors. Exp. Eye Res. 1999, 69, 533-538.
(29) Chaudhry, P. S.; Cabrera, J .; J uliani, H. R.; Varma, S. D.
Inhibition of Human Lens Aldose Reductase by Flavonoids,
Sulindac and Indomethacin. Biochem. Pharmacol. 1983, 32,
1995-1998.
(30) Lindstad, R. I.; Hermansen, L. F.; McKinley-McKee, J . S.
Inhibition and activation studies on sheep liver sorbitol dehy-
drogenase. Eur. J . Biochem. 1994, 221, 847-854.
(31) Ward, W. H. J .; Sennitt, C. M.; Ross, H.; Dingle, A.; Timmus,
D.; Mirrless, D. J .; Tuffin, D. P. Ponalrestat, a Potent and
Specific Inhibitor of Aldose Reductase. Biochem. Pharmacol.
1990, 39, 337-346.
(32) Fitzgerald, G. B.; Bauman, C.; Sajjat Hussoin, Md.; Wick, M.
M. 2,4-dihydroxy benzylamine: a specific inhibitor of glutathione
reductase. Biochem. Pharmacol. 1991, 41, 185-190.
(33) Camber, O.; Edman, P. Factors Influencing the Corneal Perme-
ability of Prostaglandin F2R and Its Isopropyl Ester in Vitro. Int.
J . Pharm. 1987, 37, 27-32.
(34) Suhonen, P.; J a¨rvinen, T.; Peura, P.; Urtti, A. Permeability of
Pilocarpic Acid Diesters Across Albino Rabbit Cornea in Vitro.
Int. J . Pharm. 1991, 74, 221-228.
Refer en ces
(1) Kador, P. F. The Role of Aldose Reductase in the Development
of Diabetic Complications. Med. Res. Rev. 1988, 8, 325-352.
(2) Tomlison, D. R.; Stevens, E. J .; Diemel, L. T. Aldose Reductase
Inhibitors and Their Potential for the Treatment of Diabetic
Complications. Trends Pharmacol. Sci. 1994, 293-297.
(3) Ammon, H. P. T.; Ha¨ring, H. U.; Kellerer, M.; Laube, H.;
Mosthaf, L.; Verspohl, E. J .; Wahl, M. A. Antidiabetic Agents.
Recent Advances in Their Molecular and Clinical Pharmacology.
Adv. Drug Res. 1996, 27, 171-178.
(4) Ashizawa, N.; Tomoji, A. Benzothiazole Aldose Reductase Inhibi-
tors. Drugs Future 1998, 23, 521-529.
(5) Costantino, L.; Rastelli, G.; Vianello, P.; Cignarella, G.; Barlocco,
D. Diabetes Complications and Their Potential Prevention:
Aldose Reductase Inhibition and Other Approaches. Med. Res.
Rev. 1999, 19, 3-23.
(6) Sarges, R.; Oates, P. J . Aldose Reductase Inhibitors: Recent
Developments. Prog. Drug Res. 1993, 40, 99-161.
(7) Da Settimo, F.; Primofiore, G.; Da Settimo, A.; La Motta, C.;
Taliani, S.; Simorini, F.; Novellino, E.; Greco, G.; Lavecchia, A.;
Boldrini, E. [1,2,4]Triazino[4,3-a]benzimidazole Acetic Acid De-
rivatives: A New Class of Selective Aldose Reductase Inhibitors.
J . Med. Chem. 2001, 44, 4359-4369.
(8) Da Settimo, A.; Menicagli, C.; Nannipieri, E. Reactions of 2,3-
Dibromoindole Derivatives with Bromine and Other Oxidizing
Agents. 2,3-Dibromoindole f 3,3-Dibromooxindole Transforma-
tion. J . Org. Chem. 1974, 39, 1995-1998.
(9) Da Settimo, A.; Santerini, V.; Primofiore, G.; Biagi, G,; Ven-
eziano, C. Bromination of Indole, Skatole and 2-Methylindole.
Oxidation of 2-Bromoindole Derivatives. Gazz. Chim. Ital. 1977,
107, 367-372.
(10) Da Settimo, A.; Primofiore, G.; Ferrarini, P. L.; Franzone J . S.;
Rocco, C.; Cravanzola, C. Bromoderivatives of Gramines. Prepa-
ration and Pharmacological Properties. Eur. J . Med. Chem.
1983, 18, 261-267.
(11) Primofiore, G.; Da Settimo, F.; Taliani, S.; Marini, A. M.;
Novellino, E.; Greco, G.; Lavecchia, A.; Besnard, F.; Trincavelli,
L.; Costa, B.; Martini, C. Novel N-(Arylalkyl)indol-3-ylglyoxy-
lylamides Targeted as Ligands of the Benzodiazepine Receptor:
Synthesis Biological Evaluation, and Molecular Modeling Analy-
sis of the structure-Activity Relationships. J . Med. Chem. 2001,
44, 2286-2297.
(35) Chien, D.-S.; Tang-Liu, D. D.-S.; Woodward, D. F. Ocular
Penetration and Bioconversion of Prostaglandin F2R Prodrugs
in Rabbit Cornea and Conjunctiva. J . Pharm. Sci. 1997, 86,
1180-1186.
(36) Meng, E. C.; Shoichet, B. K.; Kuntz, I. D. Automated Docking
with Grid-Based Energy Evaluation. J . Comput. Chem. 1992,
13, 505-524.
(37) Meng, E. C.; Gschwend, D. A.; Blaney, J . M.; Kuntz, I. D.
Orientational Sampling and Rigid-Body Minimization in Mo-
lecular Docking. Proteins: Struct., Funct., Genet. 1993, 17, 266-
278.
(38) Shoichet, B. K.; Bodian, D. L.; Kuntz, I. D. Molecular Modeling
Using Shape Descriptors. J . Comput. Chem. 1992, 13, 380-397.
(39) Connolly, M.; Gschwend, D. A.; Good, A. C.; Oshiro, C.; Kuntz,
I. D. DOCK 3.5; Department of Pharmaceutical Chemistry,
University of California: San Francisco, CA, 1995.
(12) Howard, H. R.; Sarges, R.; Siegel, T. W.; Beyer, T. A. Synthesis
and Aldose Reductase Inhibitory Activity of Substituted 2(1H)-
Benzimidazolone- and Oxindole-1-acetic Acids. Eur. J . Med.
Chem. 1992, 27, 779-789.
(13) Brittain, D. R.; Wood, R. Indoline Derivatives. Eur. Pat. Appl.
EP 125,090; Chem. Abstr. 1985, 102, 113493f.
(40) Pietra, S.; Indole Derivatives. Farmaco 1958, 13, 75-79.