G. Borsato et al. / Tetrahedron Letters 44 (2003) 561–563
563
Although a weak dienophile, norbornadiene added to
syn-1 with satisfactory yield. Remarkably, the reaction
is highly stereoselective: the tris-adduct syn-10 could be
recovered as major product, where the methano bridge
belonging to former syn-1 and the methano bridge
belonging to former norbornadiene are co-oriented.
The orientation is demonstrated by the detection (by
NOESY, see Fig. 1) of dipolar interactions between the
‘inner’ proton of the methano bridge in the norbornene
moiety (H8a in structure syn-10) and two methylene
protons of the cyclohexene ring (H4). For steric rea-
sons, norbornadiene can only approach the exo face of
the dienic systems of syn-1. Stabilizing secondary
orbital interactions (phase concordance) are possible
between the LUMO of the dienic system of syn-1 and
the HOMO of norbornadiene, either with the contribu-
tion to this orbital of the outer p(CHꢀCH) system (endo
approach of norbornadiene), or with the p(CH2) contri-
bution (exo approach).8 The exo approach appears to
be sterically less demanding, leading to the tris-adduct
syn-10.
2. (a) Bowe, M. A. P.; Miller, R. G. J.; Rose, J. B.; Wood,
D. G. M. J. Chem. Soc. 1960, 1541; (b) Toda, T.; Ohaya,
T.; Mukai, T. Bull. Chem. Soc. Jpn. 1972, 45, 1561.
3. Wilt, J. W.; Chenier, P. J. J. Org. Chem. 1970, 35, 1562.
4. (a) Zhang, S.; Zhang, D.; Liebeskind, L. S. J. Org. Chem.
1997, 62, 2312; (b) Allred, G. D.; Liebeskind, L. S. J.
Am. Chem. Soc. 1996, 118, 2748.
5. Borsato, G.; De Lucchi, O.; Fabris, F.; Groppo, L.; Luc-
chini, V.; Zambon, A. J. Org. Chem. 2002, 67, 7894.
6. syn-1: mp 250°C (dec.); 1H NMR (CDCl3, 400 MHz) l
5.05 (6H, s), 4.91 (6H, s), 3.84 (6H, t, J=1.6 Hz), 2.05
(3H, dt, J=8.6, 1.6 Hz), 1.91 (3H, dt, J=8.6, 1.6 Hz);
13C NMR (CDCl3, 100 MHz) l 148.10, 135.65, 101.87,
51.27, 50.25. anti-1: mp 230°C (dec.); 1H NMR (CDCl3,
400 MHz) l 5.18 (2H, s), 5.113 (2H, s), 5.107 (2H, s),
5.05 (2H, s), 5.01 (2H, s), 4.96 (2H, s), 3.86 (2H, m),
3.837 (2H, m), 3.833 (2H, m), 2.01 (2H, dt, J=8.6, 1.5
Hz), 1.95 (1H, dt, J=8.6, 1.5 Hz) 1.89 (2H, dt, J=8.6,
1.6 Hz), 1.86 (1H, dt, J=8.6, 1.7 Hz); 13C NMR (CDCl3,
100 MHz) l 149.25, 149.08, 148.15, 136.56, 135.82,
135.80, 101.89, 101.72, 101.57, 50.98, 50.74, 50.33, 50.27,
50.17. syn-10: mp 215°C (dec.); 1H NMR (CDCl3, 400
MHz) l: 5.99 (6H, m, H7), 3.51 (6H, t, H2, J=1.6 Hz),
2.42 (6H, t, H6, J=1.8 Hz), 2.23 (6H, m, H4%), 2.14 (3H,
dt, H9a, J=6.9, 1.6 Hz), 2.02 (6H, m, H4), 2.01 (3H, dt,
H9s, J=6.9, 1.6 Hz), 1.63 (3H, dt, H8a, J=8.3, 1.7 Hz),
1.30 (6H, m, H5), 1.29 (3H, dt, H8s, J=8.3, 1.7); 13C
NMR (CDCl3, 100 MHz) l: 146.23 (6C, C3), 137.27 (6C,
C7), 137.10 (6C, C1), 62.44 (3C, C9), 50.86 (6C, C6), 50.56
(6C, C2), 44.29 (3C, C8), 37.83 (6C, C5), 29.73 (6C, C4).
The assignments refer to the non-IUPAC numbering
reported with the structure.
Acknowledgements
This work was cofunded by MURST (Rome) within
the national project ‘Stereoselezione in Sintesi Organ-
ica. Metodologie e Applicazioni’.
References
7. TCNE: Avenati, M.; Pilet, O.; Carrupt, P.-A.; Vogel, P.
Helv. Chim. Acta 1982, 65, 178. PTAD: Altundas, A.;
Akbulut, N.; Balci, M. Helv. Chim. Acta 1998, 81, 828.
DMAD: Butler, D. N.; Snow, R. A. Can. J. Chem. 1975,
53, 256. 1O2: Hagenbuch, J.-P.; Birbaum, J.-L.; Metral,
J.-L.; Vogel, P. Helv. Chim. Acta 1982, 65, 887. Atasoy,
B.; Bayramoglu, F.; Hoekelek, T. Tetrahedron 1994, 50,
5753.
1. (a) Cossu, S.; De Lucchi, O.; Lucchini, V.; Valle, G.;
Balci, M.; Dastan, A.; Demirci, B. Tetrahedron Lett.
1997, 38, 5319; (b) Durr, R.; Cossu, S.; Lucchini, V.; De
Lucchi, O. Angew. Chem., Int. Ed. Engl. 1998, 36, 2805;
(c) Zonta, C.; Cossu, S.; Peluso, P.; De Lucchi, O. Tetra-
hedron Lett. 1999, 40, 8185; (d) Fabris, F.; De Martin,
A.; De Lucchi, O. Tetrahedron Lett. 1999, 40, 9121; (e)
Paulon, A.; Cossu, S.; De Lucchi, O.; Zonta, C. J. Chem.
Soc., Chem. Commun. 2000, 1837; (f) Zonta, C.; Cossu,
S.; De Lucchi, O. Eur. J. Org. Chem. 2000, 1965.
8. Destro, F.; Lucchini, V.; Prato, M. Tetrahedron Lett.
1984, 25, 5573.