SOLVENT AT THE TS IN THE SOLVOLYSIS OF HINDERED SULFONYL COMPOUNDS
molecularity of TS with nucleophilic assistance of solvent
depends strongly on the structure of nucleophile. The TS can
Acknowledgements
The authors gratefully acknowledge EU financial support for the
mobility of MI to the UDC within the trans-European mobility
Erasmus Mundus action TEMPO (372283-1-2012-1-PT-ERA
MUNDUS-EMA21).
be cyclic for unbranched alcohols (methanol, ethanol) or linear
(SN3-like mechanism) for alcohols with bulky alkyl groups
(iso-propanol). In the case of 2,4,6-i-Pr3-benzenesulfonyl
chloride, a large steric volume of o-alkyl groups promotes
the formation of linear TS of SN3-type that facilities the
removal of steric hindrance to the nucleophile attack, which
is reflected on its reactivity.
Our recent studies have shown that arenesulfonyl chlorides
alcoholysis takes place through a spectrum of SN2 TSs of cyclic
or linear structure with participation of a network of additional
solvent molecules, mimicking a general base catalysis process.
cSN2sn or SN2sn notations are proposed to represent solvolytic
processes undergoing bimolecular nucleophilic substitutions
involving solvent molecules at the TS, cylic (c) or linear. “n” is
either the closest integer or half-integer to the reaction order
relative to the solvent or, in computational studies, the proposed
number of solvent molecules taking part in the TS.
REFERENCES
[1] I. M. Gordon, H. Maskill, M. F. Ruasse, Chem. Soc. Rev. 1989, 18,
123–151.
[2] F. P. Ballistreri, A. Cantone, E. Maccarone, G. A. Tomaselli, M.
Tripolone, J. Chem. Soc. Perkin Trans. 1981, 2, 438–441.
[3] F. E. Jenkins, A. N. Hambly, Aust. J. Chem. 1961, 14, 205–210.
[4] Z. H. Ryu, S. W. Lee, M. J. D’Souza, L. Yaakoubd, S. E. Feld, D. N. Kevill,
Int. J. Mol. Sci. 2008, 9, 2639–2657.
[5] T. W. Bentley, R. O. Jones, D. H. Kang, S. Koo, J. Phys. Org. Chem.
2009, 22, 799–806.
[6] L. I. Rubleva, I. N. Krut’ko, R. S. Mitchenko, Russ. J. Org. Chem. 1998,
34, 1006–1009.
[7] R. V. Vizgert, L. I. Rubleva, N. N. Maksimenko, Zh. Org. Khim. 1989, 25,
810–814.
[8] S. Yamabe, G. Zeng, W. Guan, S. Sakaki, J. Comput. Chem. 2014, 35,
1140–1148.
[9] T. W. Bentley, Int. J. Mol. Sci. 2015, 16, 10601–10623.
[10] M. Mikozajczyk, Phosphorous and Sulfur. 1986, 27, 31–42.
[11] I. S. Koo, I. Lee, J. Oh, K. Yang, T. W. Bentley, J. Phys. Org. Chem. 1993,
6, 223–227.
EXPERIMENTAL
Chemical kinetic studies were carried out spectrophotometrically
under pseudo-first order with respect to the nucleophile on a
Cary 1E UV-Vis spectrophotometer, in a thermostated quartz
cuvette (l = 1 cm) at 323 K.
[12] L. Treindl, R. E. Robertson, S. E. Sugamori, Can. J. Chem. 1969, 47,
4199–4206.
[13] A. R. Haughton, R. M. Laird, M. J. Spence, J. Chem. Soc. Perkin Trans.
1975, 2, 637–643.
[14] L. I. Rubleva, I. N. Krut’ko, Ukr. Khim. Zh. 2002, 68, 118–120.
[15] D. N. Kevill, M. J. D’Souza, Collect. Czech. Chem. Commun. 1999, 64,
1790–1796.
[16] L. Rubleva, V. Lewandowski, D. Mysyk, N. Yazykov, The Bulletin of
DonNTU. Chem.Ser. 2007, 119, 69–72.
[17] M. L. Tonnet, A. N. Hambly, Aust. J. Chem. 1971, 24, 703–712.
[18] I. S. Koo, T. W. Bentley, D. H. Kang, I. Lee, J. Chem. Soc. Perkin Trans.
1991, 2, 175–179.
[19] I. S. Koo, T. W. Bentley, G. Llewellyn, K. Yang, J. Chem. Soc. Perkin
Trans. 1991, 2, 1175–1179.
[20] A. Arcoria, F. P. Ballistreri, E. Spina, G. A. Tomaselli, E. Maccarone,
J. Chem. Soc., Perkin Trans. 1988, 2, 1793–1798.
[21] F. E. Jenkins, A. N. Hambly, Aust. J. Chem. 1961, 14, 190–204.
[22] B. Rossall, R. E. Robertson, Can. J. Chem. 1971, 49, 1441–1450.
[23] D. N. Kevill, B. C. Park, K. H. Park, M. J. D’Souza, L. Yaakoubd, S. L.
Mlynarski, J. B. Kyong, Org. Biomol. Chem. 2006, 4, 1580–1586.
[24] L. C. Manege, T. Ueda, M. Hojo, M. Fujio, J. Chem. Soc. Perkin Trans.
1998 9, 2, 1961–1965.
[25] O. Rogne, J. Chem. Soc. (B). 1969, 663–665.
[26] D. N. Kevill, M. J. D’Souza, J. Chem. Res. 2008, 61–66.
[27] T. W. Bentley, R. O. Jones, J. Phys. Org. Chem. 2007, 20, 1093–1101.
[28] M. Iazykov, L. M. Canle, J. A. Santaballa, L. Rublova, Int. J. Chem. Kinet.
2015, 47, 744–750.
Benzenesulfonyl chloride, 4-Me-benzenesulfonyl chloride,
4-Br-benzenesulfonyl chloride, and 2,4,6-trimethylbenzenesulfonyl
chloride were purchased from Sigma-Aldrich and recrystallized from
hexane prior to their use. 2,4,6-i-Pr3-benzenesulfonyl chloride,
2,4,6-Me3-3-NO2-benzenesulfonyl chloride, 2,4-Me2-benzenesulfonyl
chloride, 2,6-Me2-4-t-Bu-benzenesulfonyl chloride, 2,3,5,6-Me4-
benzenesulfonyl chloride, and 2,4,6-(OMe)3-benzenesulfonyl
chloride were prepared from the corresponding benzene
derivatives as follows.[40] Under constant stirring (T = 0 °C), 1 mol of
hydrocarbon, dissolved in 450 mL of an inert solvent (CHCl3, CCl4
and hexane), was added to crystalline NaCl (1 mol) and then
chlorosulfonic acid (5 mol) was slowly added dropwise over half
an hour. After 3–4 h, the reaction mixture was poured onto ice,
treated with chloroform, the extract dried over CaCl2 or Na2SO4,
and filtered. The filtrate evaporated under vacuum. The resulting
sulfonyl chloride was distilled under vacuum (2–5mmHg) with a
fractionating column; the middle fraction was collected and
recrystallized from hexane (yield 65–85%). 2,4,6-Me3-3-NO2-
benzenesulfonyl chloride, was synthesized analogously, but at a
higher temperature (20–30°C).
Alcohols were purchased of analytical grade (Sigma-Aldrich).
Molecular sieves (3 Å) were used for dehydration. All alcohols
were redistilled immediately before the kinetic experiments at
the temperatures specified in the literature (b.p.MeOH = 64.4°C;
b.p.EtOH = 78.32°C; b.p.i-PrOH = 82.6°C at 760 mmHg). Hexane
was purified as follows.[41] The hydrocarbon was washed with
concentrated sulfuric acid and then with water and dried,
and finally distilled from sodium metal (b.p. = 68°C). The
distillate was stored over 3 Å molecular sieves. The composition
of the alcohol-hexane mixtures varied for each alcohol
(Supporting Information).
[29] C. Hansch, A. Leo, Substituent Constants for Correlation Analysis in
Chemistry and BiologyJohn Wiley & Sons, New York, 1979.
[30] H. K. Hall Jr. , J. Am. Chem. Soc. 1956, 78, 1450–1454.
[31] C. Reichardt, Solvents and Solvent Effects in Organic Chemistry John
Wiley & Sons, 2006.
[32] K. Lichtenecker, K. Rother, Phys. Zeitschr. 1931, 32, 255–260.
[33] T. H. Lowry, K. S. Richardson, Mechanism and Theory in Organic
Chemistry 2nd edn. Harper and Row, New York, 1981.
[34] M. Iazykov, L. M. Canle, J. A. Santaballa, L. Rublova, The SN3 dilemma:
characterization of the transition state for solvolysis reactions of
hindered sulfonyl halides, in: XXXV Biennial Meeting of the Spanish
Royal Society of ChemistryA Coruña, Spain, 2015.
[35] M. Charton, J. Am. Chem. Soc. 1975, 97, 1552–1556.
[36] V. I. Laba, A. V. Sviridova, V. N. Nesterov, Crystallogr. Rep. 2009, 54,
44–47.
Structure and purity of the obtained sulfonyl compounds were
confirmed by NMR spectroscopy and monocrystal X-ray
diffraction (Supporting Information).
[37] C. Chatgilialoglu, B. C. Gilbert, R. O. C. Norman, J. Chem. Soc. Perkin
Trans. 1979, 2, 770–775.
J. Phys. Org. Chem. (2016)
Copyright © 2016 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/poc