Published on Web 02/10/2005
Molecular Recognition in a Thermoplastic Elastomer
Rolf A. Koevoets,† Ron M. Versteegen,† Huub Kooijman,‡ Anthony L. Spek,‡
Rint P. Sijbesma,*,† and E. W. Meijer†
Contribution from the Laboratory of Macromolecular and Organic Chemistry, EindhoVen
UniVersity of Technology, P.O. Box 513, 5600 MB EindhoVen, The Netherlands, and BijVoet
Center for Biomolecular Research, Crystal and Structural Chemistry, Utrecht UniVersity,
Padualaan 8, 3584 CH, Utrecht, The Netherlands
Received August 13, 2004; Revised Manuscript Received December 23, 2004; E-mail: r.p.sijbesma@tue.nl
Abstract: Selective incorporation of bisurea guests in thermoplastic elastomers with poly(tetrahydrofuran)
soft blocks and bisurea containing hard blocks is observed when the distances between the urea groups
of host and guest match. The incorporation leads to significant modulation of mechanical properties. With
bisurea-functionalized dyes as guests, a strong difference in extractability by detergent solution was shown
between dyes differing by just one methylene unit between urea groups. Upon elongation of elastomer
films, strong differences in alignability of matching and nonmatching dyes were observed.
Introduction
the strong association between low molecular weight compounds
containing bisurea groups to obtain gelling agents.10 Thermoplas-
Molecular recognition in polymers is used extensively to
selectively bind small molecules or ions, and it provides a
powerful tool for the modulation of materials properties.1-4 In
elastomeric polymers, reversible alignment of, for example,
covalently attached azobenzenes molecules5 or noncovalently
embedded fluorescent dyes6 by mechanical deformation of the
polymeric matrix has been used to tune the optical properties
of the resulting materials. Smith et al. studied the orientation
of dyes and π-conjugated polymers that were blended with
polyolefins.7 Subsequently drawing the films resulted in highly
oriented chromophores, with dichroic ratios exceeding 20.
Here, we demonstrate the design of thermoplastic elastomeric
hosts bearing uniform bisurea recognition units8 and size-
selective guests that self-assemble into supramolecular ribbons
(Figure 2) to form functional materials.
tic elastomers (TPEs) containing urea groups have also been syn-
thesized before.11 There are, however, only a few examples of
TPEs possessing hard blocks comprising solely urea groups.12
Block copoly(ether)ureas 1 and 2 (Chart 1) are a new class of
thermoplastic elastomers containing urea groups. They consist
of poly(tetrahydrofuran) (pTHF) soft segments (Mn ) 1100) and
(8) (a) De Feyter, S.; Grim, P. C. M.; van Esch, J.; Kellogg, R. M.; Feringa,
B. L.; De Schryver, F. C. J. Phys. Chem. B 1998, 102, 8981-8987. (b)
Gesquiere, A.; Abdel-Mottaleb, M. M. S.; De Feyter, S.; De Schryver, F.
C.; Schoonbeek, F.; van Esch, J.; Kellogg, R. M.; Feringa, B. L.; Calderone,
A.; Lazzaroni, R.; Bredas, J. L. Langmuir 2000, 16, 10385-10391. (c)
Lortie, F.; Boileau, S.; Bouteiller, L.; Chassenieux, C.; Deme, B.; Ducouret,
G.; Jalabert, M.; Laupretre, F.; Terech, P. Langmuir 2002, 18, 7218-7222.
(d) Simic, V.; Bouteiller, L.; Jalabert, M. J. Am. Chem. Soc. 2003, 125,
13148-13154.
(9) Etter, M. C.; Urbanczyk-Lipkowska, Z.; Zia-Ebrahimi, M.; Panunto, T.
W. J. Am. Chem. Soc. 1990, 112, 8415-8426.
(10) (a) Hanabusa, K.; Shimura, K.; Hirose, K.; Kimura, M.; Shirai, H. Chem.
Lett. 1996, 885-886. (b) van Esch, J.; De Feyter, S.; Kellogg, R. M.; De
Schryver, F.; Feringa, B. L. Chem.-Eur. J. 1997, 3, 1238-1243. (c) de
Loos, M.; van Esch, J.; Stokroos, I.; Kellogg, R. M.; Feringa, B. L. J. Am.
Chem. Soc. 1997, 119, 12675-12676. (d) van Esch, J.; Kellogg, R. M.;
Feringa, B. L. Tetrahedron Lett. 1997, 38, 281-284. (e) van Esch, J.;
Schoonbeek, F.; De Loos, M.; Kooijman, H.; Spek, A. L.; Kellogg, R. M.;
Feringa, B. L. Chem.-Eur J. 1999, 5, 937-950. (f) De Loos, M.;
Ligtenbarg, A. G. J.; van Esch, J.; Kooijman, H.; Spek, A. L.; Hage, R.;
Kellogg, R. M.; Feringa, B. L. Eur. J. Org. Chem. 2000, 3675-3678. (g)
De Loos, M.; van Esch, J.; Kellogg, R. M.; Feringa, B. L. Angew. Chem.,
Int. Ed. 2001, 40, 613-616. (h) Boileau, S.; Bouteiller, L.; Laupretre, F.;
Lortie, F. New J. Chem. 2000, 24, 845-848. (i) Lortie, F.; Boileau, S.;
Bouteiller, L.; Chassenieux, C.; Deme, B.; Ducouret, G.; Jalabert, M.;
Laupretre, F.; Terech, P. Langmuir 2002, 18, 7218-7222.
Urea groups are known to associate strongly via bifurcated
hydrogen bonds,9 whose strength exceeds that of amide and
urethane hydrogen bonds. Several research groups have utilized
† Eindhoven University of Technology.
‡ Utrecht University.
(1) (a) Meissner, R. S.; Rebek, J., Jr.; de Mendoza, J. Science 1995, 270, 1485-
1488. (b) Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.;
Russell, T. P.; Rotello, V. M. Nature 2000, 404, 746-748. (c) Das, K.;
Nakade, H.; Penelle, J.; Rotello, V. M. Macromolecules 2004, 37, 310-
314.
(2) (a) Ruokolainen, J.; Makinen, R.; Torkkeli, M.; Makela, T.; Serimaa, R.;
ten Brinke, G.; Ikkala, O. Science 1998, 280, 557-560. (b) Ikkala, O.; ten
Brinke, G. Science 2002, 295, 2407-2409.
(11) (a) Heikens, D.; Meijers, A.; Reth, P. H. v. Polymer 1968, 9, 15-18. (b)
Musselman, S. G.; Santosusso, T. M.; Barnes, J. D.; Sperling, L. H. J.
Polym. Sci. 1999, 37, 2586-2600. (c) Beck, R. A.; Truss, R. W. Polymer
1999, 40, 307-313. (d) Shirasaka, H.; Inoue, S.-i.; Asai, K.; Okamoto, H.
Macromolecules 2000, 33, 2776-2778. (e) Garrett, J. T.; Siedlecki, C. A.;
Runt, J. Macromolecules 2001, 34, 7066-7070. (f) Garrett, J. T.; Lin, J.
S.; Runt, J. Macromolecules 2002, 35, 161-168.
(12) (a) Yilgor, I.; Sha’aban, A. K.; Steckle, W. P., Jr.; Tyagi, D.; Wilkes, G.
L.; McGrath, J. E. Polymer 1984, 25, 1800-1806. (b) Tyagi, D.; Yilgor,
I.; McGrath, J. E.; Wilkes, G. L. Polymer 1984, 25, 1807-1816. (c) Yilgor,
E.; Yilgor, I. Polymer 2001, 42, 7953-7959. (d) Colombani, O.; Bouteiller,
L.; Barioz, C.; Bonetti-Riffaud, J.; Fomperie, L. Polym. Prepr. (Am. Chem.
Soc., DiV. Polym. Chem.) 2003, 44, 620-621. (e) Yilgor, I.; Mather, B.
D.; Unal, S.; Yilgor, E.; Long, T. E. Polymer 2004, 45, 5829-5836.
(3) (a) Ilhan, F.; Galow, T. H.; Gray, M.; Clavier, G.; Rotello, V. M. J. Am.
Chem. Soc. 2000, 122, 5895-5896. (b) Drechsler, U.; Thibault, R. J.;
Rotello, V. M. Macromolecules 2002, 35, 9621-9623.
(4) Zimmerman, S. C.; Lemcoff, N. G. Chem. Commun. 2004, 5-14.
(5) (a) Bai, S.; Zhao, Y. Macromolecules 2001, 34, 9032-9038. (b) Bai, S.;
Zhao, Y. Macromolecules 2002, 35, 9657-9664.
(6) Finkelmann, H.; Kim, S. T.; Munoz, A.; Palffy-Muhoray, P.; Taheri, B.
AdV. Mater. 2001, 13, 1069-1072.
(7) (a) Weder, C.; Sarwa, C.; Bastiaansen, C.; Smith, P. AdV. Mater. 1997, 9,
1035-1039. (b) Montali, A.; Bastiaansen, C.; Smith, P.; Weder, C. Nature
1998, 392, 261-264. (c) Palmans, A. R. A.; Eglin, M.; Montali, A.; Weder,
C.; Smith, P. Chem. Mater. 2000, 12, 472-480.
9
10.1021/ja0451160 CCC: $30.25 © 2005 American Chemical Society
J. AM. CHEM. SOC. 2005, 127, 2999-3003
2999