Green Chemistry
Page 4 of 4
COMMUNICATION
Journal Name
In conclusion, we have present an environmentally friendly
method to prepare valuable 1,2,4-triazolo[1,5 ‑a]pyridines via
dehydrogenative N–N bond formation. The key is the
employment of Bu4NBr or Bu4NI as both the redox mediator
and electrolyte in an undivided cell. Neither transition metals
nor additional oxidants are required for this simple and
scalable protocol.
DOI: 10.1039/C9GC01895F
49, 3614; (b) C. Hamdouchi, P. Maiti, A. M. Warshawsky, A. C. DeBaillie,
K. A. Otto, K. L. Wilbur, S. D. Kahl, A. P. Lewis, G. R. Cardona, R. W. Zink,
K. Chen, S. CR, J. P. Lineswala, G. L. Neathery, C. Bouaichi, B. A. Diseroad,
A. N. Campbell, S. A. Sweetana, L. A. Adams, O. Cabrera, X. Ma, N. P.
Yumibe, C. Montrose-Rafizadeh, Y. Chen, A. R. Mille, J. Med. Chem.,
2018, 61, 934.
For agrochemicals, see: K. Takao, M. Yukihiro, N. Kenkichi, M. Hiroto, K.
Masaki, I. Hodaka, JP2018024657, 2018.
For organic materials, see: W. Song, Y. Chen, Q. Xu, H. Mu, J. Cao,J.
Huang, J. Su, ACS Appl. Mater. Interfaces. 2018, 10, 24689.
n
n
7
8
9
Acknowledgements
(a) S. Ueda, H. Nagasawa, J. Am. Chem. Soc., 2009, 131, 15080. (b) X.
Meng, C. Yu, P. Zhao, RSC Adv., 2014, 4, 8612. (c) B. Bartels, C. G. Bolas,
P. Cueni, S. Fantasia, N. Gaeng, A. S. Trita, J. Org. Chem., 2015, 80, 1249;
This research was supported by the Natural Science Foundation of
China grant No. 21871234, Zhejiang Provincial Natural Science
Foundation of China for Distinguished Young Scholars under grant
No. LR15H300001. We also thank the Zhejiang Provincial Thousand-
Talent Program and Zhejiang University of Technology for financial
support.
10 V. J. Grenda, R. E. Jones, G. Gal, M. Sletzinger, J. Org. Chem., 1965, 30,
259.
11 K. T. Potts, H. R. Burton, J. Bhattacharyya, J. Org. Chem., 1966, 31, 260.
12 J. P. Raval, K. R. Desai, Arkivoc 2005, xiii, 21.
13 Z. Zheng, S. Ma, L. Tang, D. Zhang-Negrerie, Y. Du, K. Zhao, J. Org. Chem.,
2014, 79, 4687.
14 L. Song, X. Tian, Z. Lv, E. Li, J. Wu, Y. Liu, W. Yu, J. J. Chang, J. Org. Chem.,
2015, 80, 7219.
Conflicts of interest
There are no conflicts to declare.
15 For selected reviews, see: see: (a) M. Yan, Y. Kawamata, P. S. Baran,
Chem. Rev., 2017, 117, 13230; (b) J.-I. Yoshida, A. Shimizu, R. Hayashi,
Chem. Rev., 2018, 118, 4702; (c) K. D. Moeller, Chem. Rev., 2018, 118,
4817; (d) J. E. Nutting, M. Rafiee, S. S. Stahl, Chem. Rev., 2018, 118,
4834; (e) J.-I. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev.,
2008, 108, 2265; (f) K. D. Moeller, Tetrahedron, 2000, 56, 9527; (g) J. B.
Sperry, D. L. Wright, Chem. Soc. Rev. 2006, 35, 605; (h) S. Tang, Y. Liu, A.
Lei, Chem. 2018, 4, 27; (i) N. Sauermann, T. H. Meyer, Y. Qiu, L.
Ackermann, ACS Catal., 2018, 8, 7086; (j) Q.-L. Yang, P. Fang, T.-S. Mei,
Chin. J. Chem., 2018, 36, 338; (k) A. Wiebe, T. Gieshoff, S. Möhle, E.
Rodrigo, M. Zirbes, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57,
5594; (l) Z. Ye, F. Zhang, Chin. J. Chem., 2019, 37, 513.
16 (a) H. Lund, O. Hammerich, Eds. Organic Electrochemistry, 4th ed.;
Marcel Dekker, Inc., 2001. (b) C. Moinet, In Encyclopedia of
Electrochemistry; A. J. Bard, M. Stratmann, Eds.; Vol. 8, Wiley-VCH:
Weinheim, 2004, pp. 341; (c) R. Francke, Beilstein J. Org. Chem., 2014,
10, 2858; (d) P. Wang, S. Tang, A. Lei, Green Chem., 2017, 19, 2092; (e) Y.
Jiang, K. Xu, C. Zeng, Chem. Rev., 2018, 118, 4485 and references
therein; (f) S.-K. Mo, Q.-H. Teng, Y.-M. Pan, H.-T. Tang, Adv. Synth. Catal.
2019, 361, 1756 – 1760.
17 B. R. Rosen, E. W. Werner, A. C. O’Brien, P. S. Baran, J. Am. Chem. Soc.,
2014, 136, 5571.
18 (a) T. Gieshoff, D. Schollmeyer, S. R. Waldvogel, Angew. Chem. Int. Ed.,
2016, 55, 9437; (b) T. Gieshoff, A. Kehl, D. Schollmeyer, K. D. Moller, S. R.
Waldvogel, J. Am. Chem. Soc., 2017, 139, 12317.
19 A. Kehl, T. Gieshoff, D. Schollmeyer, S. R. Waldvogel, Chem. Eur. J., 2018,
24, 590.
20 P. Xu, H.-C. Xu, ChemElectroChem, DOI:10.1002/celc.201900080.
21 Z. Ye, M. Ding, Y. Wu, Y. Li, W. Hua, F. Zhang, Green Chem., 2018, 20,
1732.
22 (a) Z. Ye, F. Wang, Y. Li, F. Zhang, Green Chem., 2018, 20, 5271; (b) M.
Liu, C. Zhang, M. Ding, B. Tang, F. Zhang, Green Chem., 2017, 19, 4509;
(c) C. Zhang, M. Liu, M. Ding, H. Xie, F. Zhang, Org. Lett., 2017, 19, 3418;
(d) H. Xie, M. Ding, M. Liu, T. Hu, F. Zhang, Org. Lett., 2017, 19, 2600; (e)
J. Guo, H. He, Z. Ye, K. Zhu, Y. Wu, F. Zhang, Org. Lett., 2018, 20, 5692; (f)
S. Yang; F. Wang; Y. Wu; T. Hu; Chem. Commun., 2018, 54, 3239-3242.
23 R. Francke, R. D. Little, Chem. Soc. Rev., 2014, 43, 2492.
24 For selected samples of indirect electrochemical heterocyclic
construction methods (a) Y. Wu, H. Yi, A. Lei, ACS Catal., 2018, 8, 1192;
(b) L. Zhu, P. Xiong, Z.-Y. Mao, Y.-H. Wang, X. Yan, X. Lu, H.-C. Xu, Angew.
Chem. Int. Ed., 2016, 55, 2226; (c) Y.-Y. Jiang, S. Liang, C.-C. Zeng, L.-M.
Hua, B.-G. Sun, Green Chem., 2016, 18, 6311. (d) Z.-W. Hou, H. Yan, J.-
S. Song, H.-C. Xu, Chin. J. Chem. 2018, 36, 909. (e) Z.-W. Hou, Z.-Y. Mao,
Y. Y. Melcamu, X. Lu, H.-C. Xu, Angew. Chem. Int. Ed. 2018, 57, 1636.
Notes and references
1
2
E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem., 2014, 57, 10257.
(a) M. Nettekoven, B. Püllmann, S. Schmitt, Synthesis, 2003, 11, 1649; (b)
G. Bergamini, K. Bell, S.Shimamura, T. Werner, A. Cansfield, K. Müller, J.
Perrin, C. Rau, K. Ellard, C. Hopf, C. Doce, D. Leggate, R. Mangano, T.
Mathieson, A. O’Mahony, I. Plavec, F. Rharbaoui, F. Reinhard, M. M.
Savitski, N. Ramsden, E. Hirsch, G. Drewes, O. Rausch, M. Bantscheff, G.
Neubauer, Nat. Chem. Biol. 2012, 8, 576; (c) K. Bell, M.Sunose, K.Ellard,
A. Cansfield, J. Taylor, W. Miller, N. Ramsden, G. Bergamini, G.
Neubauer, Bioorg. Med. Chem. Lett., 2012, 22, 5257; (d) M. Siu, R.
Pastor, W. Liu, K. Barrett, M. Berry, W. S. Blair, C. Chang, J. Z. Chen, C.
Eigenbrot, N. Ghilardi, P. Gibbons, H. He, C. A. Hurley, J. R. Kenny, S. C.
Khojasteh, H. Le, L. Lee, J. P. Lyssikatos, S. Magnuson, R. Pulk, V. Tsui, M.
Ultsch, Y. Xiao, B.-Y. Zhu, D. Sampath, Bioorg. Med. Chem. Lett., 2013,
23, 5014; (e) Y. Oguro, D. R. Cary, N. Miyamoto, M. Tawada, H. Iwata, H.
Miki, A. Hori, S. Imamura, Bioorg. Med. Chem. Lett., 2013, 23, 4714; (f) S.
Ahmed, A. Ayscough, G. R. Barker, H. E. Canning, R. Davenport, R.
Downham, D. Harrison, K. Jenkins, N. Kinsella, D. G. Livermore, S. Wright,
A. D. Ivetac, R. Skene, S. J. Wilkens, N. A. Webster, A. G. Hendrick, J.
Med. Chem. 2017, 60, 5663.
3
4
5
For anti-cancer activity, see: (a) B. J. Dugan, D. E. Gingrich, E. F. Mesaros,
K. L. Milkiewicz, M. A. Curry, A. L. Zulli, P. Dobrzanski, C. Serdikoff, M.
Jan, T. S. Angeles, M. S. Albom, J. L. Mason, L. D. Aimone, S. L. Meyer, Z.
Huang, K. L. Wells-Knecht, M. A. Ator, B. A. Ruggeri, B. D. Dorsey, J. Med.
Chem., 2012, 55, 5243; (b) X.-M. Wang, J. Xu, Y.-P. Li, H. Li, C.-S. Jiang,
G.-D. Yang, S.-M. Lu, S.-Q. Zhang, Eur. J. Med. Chem., 2013, 67, 243.
For anti-bacterial activity, see: S. P. East, C. B. White, O. Barker, S.
Barker, J. Bennett, D. Brown, E. A. Boyd, C. Brennan, C. Chowdhury, I.
Collins, E. Convers-Reignier, B. W. Dymock, R. Fletcher, D. J. Haydon, M.
Gardiner, S. Hatcher, P. Ingram, P. Lancett, P. Mortenson, K.
Papadopoulos, C. Smee, H. B. Thomaides-Brears, H. Tye, J. Workman, L.
G. Czaplewski, Bioorg. Med. Chem. Lett., 2009, 19, 894.
For anti-inflammatory activity, see: (a) M. Sunose, K. Bell, K. Ellard, G.
Bergamini, G. Neubauer, T. Werner, N. Ramsden, Bioorg. Med. Chem.
Lett., 2012, 22, 4613; (b) C. J. Menet, S. R. Fletcher, G. V. Lommen, R.
Geney, J. Blanc, K. Smits, N. Jouannigot, P. Deprez, E. M. van der Aar, P.
Clement-Lacroix, L. Lepescheux, R. Galien, B. Vayssiere, L. Nelles, T.
Christophe, R. Brys, M. Uhring, F. Ciesielski, L. V. Rompaey, J. Med.
Chem., 2014, 57, 9323.
6
For anti-diabetic activity, see: (a) S. D. Edmondson, A. Mastracchio, R. J.
Mathvink, J. He, B. Harper, Y. J. Park, Y. M. Beconi, J. D. Salvo, G. J.
Eiermann, H. He, B. Leiting, J. F. Leone, D. A. Levorse, K. Lyons, R. A.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx