Scheme 1
Scheme 2a
the 16,20-syn-19,20-cis-THP ring system in 2 would be
achieved by SmI2-induced reductive cyclization8 of â-alkoxy
acrylate 4 having a formyl group followed by stereoinversion
at the C-19 position. The acrylate 4 should be prepared
through a two-directional chain extension of 2,3-O-isopro-
pylidene-D-threitol (5) reported by Kotsuki et al.9 For this
purpose, allylmagnesium bromide and chiral acetylene 610,11
were designed as synthons for the chains.
a Reagents and conditions: (a) TBDMSCl, NaH, DME, THF, 0
°C to room temperature, 90%; (b) Tf2O, Et3N, CH2Cl2, -15 °C;
(c) 6, n-BuLi, DMPU, THF, -15 °C; (d) TBAF, THF, room
temperature, 70% (three steps from 7); (e) (Ph3P)3RhCl, H2,
benzene, room temperature, 95%; (f) allylMgBr, CuBr, Et2O, -15
°C to room temperature, 74% (two steps); (g) OsO4, NaIO4, THF/
H2O, room temperature; (h) CSA, CH(OMe)3, MeOH, 0 °C, 76%
(two steps); (i) BnBr, NaH, Bu4NI, DMF, 0 °C to room temperature,
98%; (j) 1,3-propanedithiol, Zn(OTf)2, (CH2Cl)2, 50 °C, 97%; (k)
ethylpropiolate, N-methylmorpholine, CH2Cl2, room temperature,
94%; (l) MeI, NaHCO3, CH3CN/H2O, 0 °C to room temperature,
92%; (m) SmI2, MeOH, THF, 0 °C, 95%.
Synthesis of 2 began with triflation12 of threitol derivative
7 (Scheme 2).13 The resulting triflate 8 was coupled with a
lithium acetylide derived from terminal acetylene 6 in the
(6) (a) Takahashi, S.; Nakata, T. Tetrahedron Lett. 1999, 40, 723-726.
(b) Takahashi, S.; Nakata, T. Tetrahedron Lett. 1999, 40, 727-730. (c)
Takahashi, S.; Maeda, K.; Hirota, S.; Nakata, T. Org. Lett. 1999, 1, 2025-
2028. (d) Takahashi, S.; Fujisawa, K.; Sakairi, N.; Nakata, T. Heterocycles
2000, 53, 1361-1370. (e) Takahashi, S.; Nakata, T. J. Org. Chem. 2002,
67, 5739-5752. (f) Takahashi, S.; Kubota, A.; Nakata, Angew. Chem., Int.
Ed. 2002, 41, 4751-4754 (g) Takahashi, S.; Kubota, A.; Nakata, T.
Tetrahedron Lett. 2002, 43, 8661-8664. (h) Takahashi, S.; Kubota, A.;
Nakata, T. Tetrahedron 2003, 59, 1627-1638.
presence of N,N′-dimethylpropyleneurea (DMPU),9b and
subsequent de-silylation with TBAF afforded alcohol 9 in
70% overall yield from 7. Reduction of the triple bond in 9
was performed by using the Wilkinson catalyst (5.0 mol %)
in benzene to give saturated compound 10 in 95% yield. The
alcohol 10 was, again, converted into the corresponding
triflate, which reacted with allylmagnesium bromide in the
presence of cuprous bromide in ether to give a terminal olefin
1114 in 74% yield from 10. For introduction of the â-alkoxy
acrylate residue into the C-16 position of 11, discrimination
of two oxygen functions at the C-15 and 16 positions was
needed. Therefore, olefin 11 was oxidized under Lemieux-
Johnson conditions and then treated with CSA and HC-
(7) Sinha, S. C.; Sinha, A.; Sinha, S. C.; Keinan, E. J. Am. Chem. Soc.
1997, 119, 12014-12015.
(8) (a) Hori, N.; Matsukura, H.; Matsuo, G.; Nakata, T. Tetrahedron
Lett. 1999, 40, 2811-2814. (b) Matsuo, G.; Hori, N.; Nakata, T. Tetrahedron
Lett. 1999, 40, 8859-8863. (c) Hori, N.; Matsukura, H.; Nakata, T. Org.
Lett. 1999, 1, 1099-1101. (d) Hori, N.; Matsukura, H.; Matsuo, G.; Nakata,
T. Tetrahedron 2002, 58, 1853-1864. (e) Matsuo, G.; Kadohama, H.;
Nakata, T. Chem. Lett. 2002, 148-149.
(9) (a) Kotsuki, H.; Kadota, I.; Ochi, M. J. Org. Chem. 1990, 55, 4417-
4422. (b) Kotsuki, H.; Kadota, I.; Ochi, M. Tetrahedron Lett. 1990, 32,
4609-4612.
(10) This compound was prepared from (R)-1,2-anhydro-4-O-benzylbu-
tane-1,2,4-triol11 in three steps as follows: (i) lithium (trimethylsilyl)-
acetylide, BF3‚Et2O, THF, -78 °C; (ii) K2CO3, MeOH, room temperature,
91% (two steps); (iii) BnBr, NaH, n-Bu4NI, DMF, 0 °C, 99%.
(11) Nakata, T.; Suenaga, T.; Oishi, T. Tetrahedron Lett. 1989, 30, 6525-
6528.
(13) Iida, H.; Yamazaki, N.; Kibayashi, C. J. Org. Chem. 1987, 52,
3337-3342.
(14) Attempts for a one-pot double alkylation into the tosyltriflate of 5
gave unsatisfactory results.
(12) Mukai, C.; Kim, J. S.; Uchiyama, M.; Sakamoto, S.; Hanaoka, M.
J. Chem. Soc., Perkin Trans. 1 1998, 2903-2915.
1354
Org. Lett., Vol. 5, No. 8, 2003