10.1002/anie.202002032
Angewandte Chemie International Edition
RESEARCH ARTICLE
R. Ward, Chem. Rev. 2018, 118, 142-231; f) A. D. Liang, J. Serrano-
Plana, R. L. Peterson, T. R. Ward, Acc. Chem. Res. 2019, 52, 585-595
a) F. Schwizer, Y. Okamoto, T. Heinisch, Y. Gu, M. M. Pellizzoni, V.
Lebrun, R. Reuter, V. Köhler, J. C. Lewis, T. R. Ward, Chem. Rev. 2018,
118, 142-231; b) H. J. Davis, T. R. Ward, ACS Cent. Sci. 2019, 5, 1120-
1136; c) T. Matsuo, T. Miyake, S. Hirota, Tetrahedron 2019, 60, 151226-
151233.
Conclusion
[5]
[6]
In summary, arginine-rich miniproteins made of natural amino
acids, and equipped with i, i+4 bis-histidine residues, can
efficiently react with different Pd(II) salts to form stapled
derivatives that show enhanced cell internalization properties.
More importantly, the pallado-miniproteins obtained when using
PdCl2(COD) as palladium source, work as effective
metalloreactors to promote depropargylation reactions inside
living mammalian cells; transformations that cannot be performed
using just the palladium sources. The effectivity of approach is
likely associated to a synergistic beneficial effect of the
conformational constrain introduced by the metal bridge, and a
protective role of the peptide scaffolding, which avoids a rapid
deactivation of the metal.
Our results represent a first step towards the development of a
“bottom-up” strategy for the generation of artificial catalytic
metalloproteins capable of working in the native living
environment of enzymes. Additionally, the well-known
transformative potential of palladium catalysis prompts well for
further applications of the strategy in other type of reactions.
a) F. Nastri, D. D´Alonzo, L. Leone, G. Zambrano, V. Pavone, A.
Lombardi, Trend. Biochem. Sci. 2019, 44, 1022-1040; b) S. Studer, D.
A. Hansen, Z. L. Pianowski, P. R. E. Mittl, A. Debon, S. L. Guffy, B. S.
Der, B. Kuhlman, D. Hilvert, Science 2018, 362, 1285-1288.
H. Renata, Z. J. Wang, F. H. Arnold, Angew. Chem. Int. Ed. 2015, 54,
3351-3367.
[7]
[8]
[9]
Y. Okamoto, R. Kojima, F. Schwizer, E. Bartolami, T. Heinisch, S. Matile,
M. Fussenegger, T. R. Ward, Nat. Commun. 2018, 9, 1943-1949.
For recent reviews, see: a) M. Martínez-Calvo, J. L. Mascareñas, Coord.
Chem. Rev. 2018, 359, 57-79; b) A. H. Ngo, S. Bose, L. H. Do, Chem.
Eur. J. 2018, 24, 10584-10594; c) Y. Bai, J. Chen, S. C. Zimmerman,
Chem. Soc. Rev. 2018, 47, 1811-1821; d) J. J. Soldevilla-Barreda, N.
Metzler-Nolte, Chem. Rev. 2019, 119, 829-869; e) M. Martínez-Calvo, J.
L. Mascareñas, Chimia, 2018, 72, 791-801.
[10] a) C. Streu, E. Meggers, Angew. Chem. Int. Ed. 2006, 45, 5645-5648;
b) T. Völker, F. Dempwolff, P. L. Graumann, E. Meggers, Angew. Chem.
Int. Ed. 2014, 53, 10536-10540; c) M. I. Sánchez, C. Penas, M. E.
Vázquez, J. L. Mascareñas, Chem. Sci. 2014, 5, 1901-1907; d) M.
Tomás-Gamasa, M. Martínez-Calvo, J. R. Couceiro, J. L. Mascareñas,
Nat. Commun. 2016, 7, 12538-12547; e) S. Li, L. Wang, F. Yu, Z. Zhu,
D. Shobaki, H. Chen, M. Wang, J. Wang, G. Qin, U. J. Erasquin, L. Ren,
Y. Wang, C. Cai, Chem. Sci. 2017, 8, 2107-2114; f) P. Destito, J. R.
Couceiro, H. Faustino, F. López, J. L. Mascareñas, Angew. Chem. Int.
Ed. 2017, 56, 10766-10770; g) S. Bose, A. H. Ngo, L. Do, J. Am. Chem.
Soc. 2017, 139, 8792-8795; h) B. J. Stenton, B. L. Oliveira, M. J. Matos,
L. Sinatra, G. J. L. Bernardes, Chem. Sci. 2018, 9, 4185-4189; i) M.
Martínez-Calvo, J. R. Couceiro, P. Destito, J. Rodríguez, J. Mosquera,
J. L. Mascareñas, ACS Catal. 2018, 8, 6055-6061: j) J. Miguel-Ávila, M.
Tomás-Gamasa, A. Olmos, P. J. Pérez, J. L. Mascareñas, Chem. Sci.
2018, 9, 1947-1952; k) C. Vidal, M. Tomás-Gamasa, P. Destito, F. López,
J. L. Mascareñas, Nat. Commun. 2018, 9, 1913-1921; l) C. Vidal, M.
Tomás-Gamasa, A. Gutiérrez-González, J. L. Mascareñas, J. Am. Soc.
Chem. 2019,141, 5125-5129;
Acknowledgements
This work has received financial support from Spanish grants
(SAF2016-76689-R, ORFEO-CINQA network CTQ2016-81797-
REDC) the Consellería de Cultura, Educación e Ordenación
Universitaria (2015-CP082, ED431C-2017/19 and Centro
Singular de Investigación de Galicia Accreditation 2019-2022,
ED431G 2019/03), the European Union (European Regional
Development Fund-ERDF corresponding to the multiannual
financial framework 2014-2020), and the European Research
Council (Advanced Grant No. 340055). S. L.-A and A. G.-G
thanks the Ministerio de Educación, Cultura y Deporte for the FPI
[11] a) R. M. Yusop, A. Unciti-Broceta, E. M. V. Johansson, R. M. Martín-
Sánchez, M. Bradley, Nat. Chem. 2011, 3, 239-243; b) G. Y. Tonga, Y.
Jeong, B. Duncan, T. Mizuhara, R. Mout, R. Das, S. T: Kim, Y.-C. Yeh,
B. Yan, S. Hou, V. M. Rotello, Nat. Chem. 2015, 7, 597-603; c) J.
Clavadetscher, S. Hoffmann, A. Lilienkampf, L. Mackay, R. M. Yusop, S.
A. Rider, J. J. Mullins, M. Bradley, Angew. Chem. Int. Ed. 2016, 55,
15662-15666; d) M. A. Miller, B- Askevold, H. Mikula, R. H. Kohler, D.
Pirovich, R. Weissleder, Nat. Commun. 2017, 8, 15906-15918; e) A. M.
Pérez-López, B. Rubio-Ruiz, V. Sebastián, L. Hamilton, C. Adam, T. L.
Bray, S. Irusta, P. M. Brennan, G. C. Lloyd-Jones, D. Sieger, J.
Santamaría, A. Unciti-Broceta, Angew. Chem. Int. Ed. 2017, 56, 12548-
12552; f) C. Adam, A. M. Pérez-López, L. Hamilton, B. Rubio-Ruiz, T. L.
Bray, D. Sieger, P. M. Brennan, A. Unciti-Broceta, Chem. Eur. J. 2018,
24, 16783-16790; g) P. Destito, A. Sousa-Castillo, J. R. Couceiro, F.
López, M. A. Correa-Duarte, J. L. Mascareñas, Chem. Sci. 2019,10,
2598-2603; h) M. Sancho-Abero, B. Rubio-Ruiz, A. M. Pérez-López, V.
Sebastián, P. Martín-Duque, M. Arruebo, J. Santamaría, A. Unciti-
Broceta, Nat. Catal. 2019, 2, 864-872.
fellowship
(BES-2017-080555)
and
FPU
fellowship
(FPU17/00711). C. V. thank the Ministerio de Economía y
Competitividad for the Juan de la Cierva-Formación (FJCI-2017-
33168). The authors thank R. Menaya-Vargas for technical
assistance and M. E. Vázquez for the illustration support.
Keywords: Metalloproteins • Intracellular catalysis • Palladium
promoted uncaging • Stapling • bZIP proteins
[1]
[2]
a) D. H. Nies, S. Silver in Molecular Microbiology of Heavy Metals,
Springer-Verlag, Berlin, 2007; b) H. Zheng, M. Chruszc, P. Lasota, L.
Lebioda, W. Minor, J. Inorg. Biochem. 2008, 102, 1765-1776; c) K. J.
Waldron, N. J. Robinson, Nat. Rev. Microbiol. 2009, 7, 25-35; d) K. J.
Waldron, J. C. Rutherford, D. Ford, N. J. Robinson, Nature 2009, 460,
823-830.
a) C. Andreini, I. Bertini, G. Cavallaro, G. L. Holliday, J. M. Thornton, J.
Biol. Inorg. Chem. 2008, 13, 1205-1218; b) A. Pordea, Curr. Opin. Chem.
Biol. 2015, 25, 124-132; c) H. Eom, W. J. Song, J. Biol. Inorg. Chem.
2019, 24, 517-531.
[12] For relevant references on bZIP basic regions, see: a) B. Cuenoud, A.
Schepartz, Science 1993, 259, 510-513; b) T. Morii, Y. Saimei, M.
Okagami, K. Makino, Y. Sugiura, J. Am. Soc. Chem. 1997, 119, 3649-
3655; c) L. L. G. Carrete, T. Morii, A. Madder, Eur. J. Org. Chem. 2014,
2014, 2883-2891; d) A. M. Caamaño, M. E. Vázquez, J. Martínez–
Costas, L. Castedo, J. L. Mascareñas, Angew. Chem. Int. Ed. 2000, 39,
3104-3109; e) G. A. Bullen, J. H. R. Tucker, A. F. A. Peacock, Chem.
Commun. 2015, 51, 8130-8133; f) J. Mosquera, M. I. Sánchez, M. E.
Vázquez, J. L. Mascareñas, Chem. Commun. 2014, 50, 10975-10978;
g) M. E. Vázquez, A. M. Caamaño, J. MartÌnez-Costas, L. Castedo, J. L.
Mascareñas, Angew. Chem. Int. Ed. 2001, 40, 4723—4725; h) O.
[3]
[4]
a) J. C. Lewis, ACS Catal. 2013, 3, 1-22; b) C. E. Valdez, Q. A. Smith,
M. R. Nechay, A. N. Alexandrova, Acc. Chem. Res. 2014, 47, 3110-3117.
a) P. J. Deuss, R. Denheetenm, W. Laan, P. C. J. Kamer, Chem. Eur. J.
2011, 17, 4680-4698; b) M. Dürrengberger, T. R. Ward, Curr. Opin.
Chem. Biol. 2014, 19, 99-106; c) T. Heinisch, T. R. Ward, Angew. Chem.
Int. Ed. 2015, 54, 3406-3418; d) T. K. Hyster, T. R. Ward, Angew. Chem.
Int. Ed. 2016, 55, 7344-7357; e) F. Schwizer, Y. Okamoto, T. Heinisch,
Y. Gu, M. M. Pellizzoni, V. Lebrun, R. Reuter, V. KÖhler, J. C. Lewis, T.
5
This article is protected by copyright. All rights reserved.