D. Yang et al. / Tetrahedron Letters 44 (2003) 7245–7247
7247
F. Angew. Chem., Int. Ed. 1999, 38, 1871; (f) Ignarro, L.
J. Angew. Chem., Int. Ed. 1999, 38, 1883.
A.; Enders, D. Tetrahedron Lett. 1998, 39, 7823; (f)
Mino, T.; Ogawa, T.; Yamashita, M. J. Organomet.
Chem. 2003, 665, 122; (g) Job, A.; Janeck, C. F.; Bettray,
W.; Peters, R.; Enders, D. Tetrahedron 2002, 58, 2253; (h)
Enders, D.; Syrig, R.; Raabe, G.; Ferna´ndez, R.; Gasch,
C.; Lassaletta, J. M.; Llera, J. M. Synthesis 1996, 48; (i)
Enders, D.; Schiffers, R. Synthesis 1996, 53.
3. (a) Wang, P. G.; Xian, M.; Tang, X. P.; Wu, X. J.; Wen,
Z.; Cai, T. W.; Janczuk, A. J. Chem. Rev. 2002, 102,
1091; (b) Hrabie, J. A.; Keefer, L. K. Chem. Rev. 2002,
102, 1135; (c) Gerald, M. R.; Pei, T.; Sovity, P. Chem.
Rev. 2002, 102, 1191; (d) Lan, M. W.; d’Vries, S.; Loccoz,
P. M.; Schro¨der, L.; Karlin, K. D. Chem. Rev. 2002, 102,
1201.
19. (a) Nakamura, E.; Kubota, K. Tetrahedron 1997, 38,
7099; (b) Fischer, W.; Auselma, J. P. Tetrahedron Lett.
1968, 9, 877–879; (c) De´svergnes, V. B.; Compain, P.;
Vatele, J. M.; Gore´, J. Tetrahedron Lett. 1999, 40, 8789;
(d) Wang, Q. R.; Mohr, S.; Jochims, J. C. Chem. Ber.
1994, 127, 947; (e) Espildora, E.; Delgado, J. L.; de la
Cruz, P.; de la Hoz, A.; Arza, V. L.; Langa, F. Tetra-
hedron 2002, 58, 5821.
20. (a) Moon, M. W. J. Org. Chem. 1972, 37, 383; (b) Moon,
M. W. J. Org. Chem. 1972, 37, 386.
21. Guo, Y. P.; Wang, Q. R.; Jochims, J. C. Synthesis 1996,
274.
4. Drago, R. S.; Paulk, F. E. J. Am. Chem. Soc. 1960, 82,
96.
5. (a) Brown, J. F., Jr. J. Am. Chem. Soc. 1957, 79, 2480; (b)
Tuaillon, J.; Perrot, R. Helv. Chim. Acta 1978, 61, 558;
(c) Pryor, W. A.; Lightsey, J. W.; Church, D. F. J. Am.
Chem. Soc. 1982, 104, 6685; (d) Kelly, D. R.; Jones, S.;
Adigun, J. O.; Koh, K. S. V.; Hibbs, D. E.; Hursthouse,
M. B.; Jackson, S. K. Tetrahedron 1997, 53, 17221; (e)
Park, J. S. B.; Walton, J. C. J. Chem. Soc., Perkin Trans.
2 1997, 2579; (f) Hata, E.; Yamada, T.; Mukaiyama, T.
Bull. Chem. Soc. Jpn. 1995, 68, 3629.
22. Representative procedure: Stock solutions were prepared
by dissolving 0.5 mmol 1a in 100 mL dry CH2Cl2. NO
was produced by the reaction of 1 M H2SO4 solution
with saturated NaNO2 aqueous solution. The former was
added to the latter which was stirred under an argon
atmosphere. NO was carried by argon and purified by
passing it through a series of scrubbing bottles containing
4 M NaOH, ditilled water and CaCl2 in this order.
Bottles were under an argon atmosphere. The purified
NO was bubbled through a previously degassed stirred
stock solution at room temperature for an appropriate
time. After completion of the reaction, as indicated by
TLC, the reaction mixture was dried with anhydrous
MgSO4, concertrated in vacuo and purified by column
chromatography on silica gel (200–300 mesh, ethyl ace-
tate–hexane), giving the pure 2a. Data for 2a: mp
125.6°C; IR (KBr): 3104, 2942, 2868, 1612, 1549, 1447,
1349, 901, 840, 740 cm−1; 1H NMR (400 MHz, CDCl3): l
1.60 (4H, m), 1.76 (2H, m), 2.23 (2H, m), 2.62 (2H, m),
7.46 (1H, d, J=9.0 Hz), 8.56 (1H, dd, J=9.0 Hz, J=2.1
Hz), 8.89 (1H, d, J=2.1 Hz); 13C NMR (75 MHz,
CDCl3): l 21.8, 23.9, 31.7, 113.8, 120.5, 121.0, 128.6,
144.8, 148.1, 148.3; HRESIMS m/z calcd for C12H17N6O6
(MNH4+): 341.1204; found: 341.1204; EIMS m/z 323
(M+), 289, 107, 91, 79, 55. Crystal data for 2a:
C12H13N5O6, Mr=323.27, monoclinic, space group
6. d’Ischia, M. Tetrahedron Lett. 1996, 37, 8881.
7. d’Ischia, M. Tetrahedron Lett. 1996, 37, 5773.
8. Suzuki, T.; Yamaoka, R.; Nishi, M.; Ide, H.; Makino, K.
J. Am. Chem. Soc. 1996, 118, 2515.
9. (a) Nagano, T.; Takizawa, H.; Hirobe, M. Tetrahedron
Lett. 1995, 36, 8239; (b) Itoh, T.; Nagata, K.; Matsuga,
Y.; Miyazaki, M.; Ohsawa, A. J. Org. Chem. 1997, 62,
3582; (c) Hrabie, J. A.; Srinivasan, A.; George, C.;
Keefer, L. K. Tetrahedron Lett. 1998, 39, 5933.
10. Itoh, T.; Nagata, K.; Matsuga, Y.; Miyazaki, M.;
Ohsawa, A. Tetrahedron Lett. 1997, 38, 5017.
11. Mao, Y. Z.; Liu, Z. L.; Wu, L. M. Chin. J. Chem. 2000,
18, 789.
12. Itoh, T.; Nagata, K.; Matsuga, Y.; Miyazaki, M.;
Ohsawa, A. Tetrahedron Lett. 1997, 38, 4117.
13. Laszlo, P.; Polla, E. Tetrahedron Lett. 1984, 25, 3701.
14. (a) Olah, G. A.; Ho, T. L. Synthesis 1976, 610; (b)
Pozsgay, V.; Jennings, H. J. Tetrahedron Lett. 1987, 28,
5091; (c) Wildsmith, E. Tetrahedron Lett. 1972, 13, 29.
15. (a) Chan, W. H.; Shuang, S.; Choi, M. M. Analyst 2001,
126, 720; (b) Ragehy, N. A. E.; Abbas, S. S.; Khateeb, S.
Z. E. J. Pharm. Biomed. Anal. 2001, 25, 143; (c) d’ Bergh,
V. V.; Vanhees, I.; d’Boer, R.; Compernolle, F.; Vinckier,
C. J. Chromatogr. A 2000, 896, 135.
16. (a) Morgan, L. R.; Jursic, B. S.; Hooper, C. L.; Donna,
M.; Neumann, D. M.; Thangaraj, K.; LeBlane, B. W.
Bioorg. Med. Chem. Lett. 2002, 12, 3407; (b) Morgan, L.
R.; Hodgers, A. H.; LeBlance, B. W.; Boue´, S. M.; Yang,
Y.; Jursic, B. S.; Cole, R. B. Bioorg. Med. Chem. Lett.
2001, 11, 2193.
17. (a) Paschalidis, D. G.; Tossidis, I. A.; Gdaniec, M.
Polyhedron 2000, 19, 2629; (b) Bu, X. H.; Du, M.; Zhang,
L.; Song, X. B.; Zhang, R. H.; Clifford, T. Inorg. Chim.
Acta 2000, 308, 143; (c) Foersterling, F. H.; Barnes, C. E.
J. Organomet. Chem. 2001, 617, 561; (d) Maurya, M. R.;
Khurana, S.; Schulzke, C.; Rehder, D. Eur. J. Inorg.
Chem. 2001, 3, 779.
18. (a) Shawali, A. S.; Gomha, S. M. Tetrahedron 2002, 58,
8559; (b) Shawali, A. S.; Abdelkader, M. H.; Eltalbawy,
F. M. A. Tetrahedron 2002, 58, 2875; (c) Stemke, J. E.;
Chamberlin, A. R.; Bond, F. T. Tetrahedron 1976, 34,
2947; (d) Vicario, J. L.; Job, A.; Wolberg, M.; Muller,
M.; Enders, D. Org. Lett. 2002, 4, 1023; (e) Birkbeck, A.
,
P2(1)/c, a=11.282(2), b=13.033(2), c=10.162(1) A, i=
3
98.50(1)°, V=1477.8(4) A , Z=4, zcalcd=1.453 g/cm3,
,
v=0.119 mm−1, F(000)=672, 3.752q551.0°, −135h5
13, −155k50, 05l512, 3164 data collected, 2748
unique data (Rint=0.0113), 1854 data with I>2|(I), 228
refined parameters, GOF (F2)=1.017, R1=0.066, wR2=
0.112. The X-ray crystallographic structure of 2a is
shown in Figure 1. The crystallographic data has been
deposited at the Cambrigde Crystallographic Data Centre
as Supplementary Publication No. CCDC-212523.
23. The solution became acidic along with reaction. After the
completion of reaction, the organic phase was washed
with a 10 mL aqueous solution of 0.05 M NaOH. IR
indentification of compounds in the aqueous phase pre-
−
sented the existence of sodium nitrate (KBr, w NO2 1384
cm−1).