Scheme 5. Proposed Mechanism of the β-Alkylation reaction
10, 2099-2102.
[3] (a) Comito, R. J.; Finelli, F. G.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2013, 135, 9358−9361. (b) Jui, N. T.; Garber, J. A.; Finelli, F. G.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2012, 134, 11400-11403. (c)
Pham, P. V.; Ashton, K.; MacMillan, D. W. C. Chem. Sci. 2011, 2,
1470-1473. (d) Mastracchio, A.; Warkentin, A. A.; Walji, A. M.;
MacMillan, D. W. C. Proc. Nat. Acad. Sci. USA, 2010, 107,
20648-20651. (e) Devery, J. J.; Conrad, J. C.; MacMillan, D. W. C.;
Flowers, R. A. Angew. Chem. Int. Ed. 2010, 49, 6106-6110. (f) Jui, N.
T.; Lee, E. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132,
10015-10017. (g) Van Humbeck, J. F.; Simonovich, S. P.; Knowles, R.
R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 10012-10014.
(h) Um, J. M.; Gutierrez, O.; Schoenebeck, F.; Houk, K. N.; MacMillan,
D. W.C. J. Am. Chem. Soc. 2010, 132, 6001–6005. (i) Rendler, S.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027-5029. (j)
Wilson, J. E.; Casarez, A. D.; MacMillan, D. W. C. J. Am. Chem. Soc.
2009, 131, 11332-11334. (k) Conrad, J. C.; Kong, J.; Laforteza, B. N.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 11640-11641. (l)
Amatore, M.; Beeson, T. D.; Brown, S. P.; MacMillan, D. W. C.
Angew. Chem. Int. Ed. 2009, 48, 5121-5124. (m) Graham, T. H.;
Jones, C. M.; Jui, N. T.; MacMillan, D. W. C. J. Am. Chem. Soc. 2008,
130, 16494-16495. (n) Kim, H.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2008, 130, 398-399. (o) Jang, H. Y.; Hong, J. B.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2007, 129, 7004-7005. p) Beeson, T. D.;
Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C. Science,
2007, 316, 582-585.
Conclusions
In conclusion, we have developed a 5πe β-enaminyl activation
platform based on secondary enamine, which enabled the direct
β-alkylation of β-ketocarbonyls. This method was further
demonstrated to be
a
general approach for direct
β-functionalization of β-ketocarbonyls. Mechanistic studies
provided direct evidence for the existence of enaminyl radical.
Further explorations on developing a catalytic asymmetric variant
are currently underway.
Supporting Information
The supporting information for this article is available on the
[4] (a) Jeffrey, J. L.; Petronijević, F. R.; MacMillan, D. W.C. J. Am. Chem.
Soc. 2015, 137, 8404–8407.(b) Terrett, J. A.; Clift, M. D.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2014, 136, 6858−6861.(c) Petronijević, F.
R.; Nappi, M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2013, 135,
18323−18326. (d) Pirnot, M. T.; Rankic, D. A.; Marꢀn, D. B.;
MacMillan, D. W. C. F.
Acknowledgement
We thank the Natural Science Foundation of China (21390400,
21521002, 21572232 and 21672217) and the Chinese Academy of
Science (QYZDJ-SSW-SLH023) for financial support. S. L. is
supported by National Program of Top-notch Young Professionals.
[5] (a) Rossiter, B. E.; Swingle, N. E. Chem. Rev. 1992, 92, 771-806. (b)
Sibi, M. P.; Manyem, S. Tetrahedron 2000, 56, 8033-8061.
[6] Zhang, L.; Fu, N.; Luo, S. Acc. Chem. Res. 2015, 48, 986-997.
[7] For recent review on photocatalysis, see: (a) Chen, J.-R.; Hu, X.-Q.;
Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, 49, 1911–1923. (b) Skubi,
K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035–10074. (c)
Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113,
5322–5363. For selected examples, see: (a) Liu, Y.; Dong, W. Chin. J.
Chem. 2017, 35, 1491-1500. (b) Wu, J.; Li, J.; Li, H.; Zhu, C. Chin. J.
Org. Chem. 2017, 37, 2203-2210. (c) Zhang, W.-Q.; Li, Q.-Y.; Yang, X.;
Ma, Z.; Wang, H.; Wang, X.-J. Acta Chim. Sinica. 2017, 75, 80-85.(d)
Liu, W.; Zheng, X.; Zeng, J.; Cheng, P. Chin. J. Org. Chem. 2017, 37,
1-19. (e) Wang, D.; Zhang, L.; Luo, S. Acta Chim. Sinica. 2017, 75,
22-33. (f) Yang, Z.; Li, S.; Luo, S. Acta Chim. Sinica. 2017, 75, 351-354.
(g)Wu, Z.; Wang, J. Acta Chim. Sinica. 2016, 75, 74-79. (h) Zhou, Q.;
Liu, D.; Xiao, W.-J.; Lu, L. Acta Chim. Sinica. 2016, 75, 110-114. (i) Sun,
X.; Yu, S. Chin. J. Org. Chem. 2016, 36, 239-247.
References
[1] For recent reviews on asymmetric aminocatalysis, see: (a) Bertelsen,
S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178-2189 (b)
Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem.,
Int. Ed. 2008, 47, 6138-6171. (c) Dondoni, A.; Massi, A. Angew.
Chem., Int. Ed. 2008, 47, 4638-4660. (d) Barbas, C. F. Angew. Chem.,
Int. Ed. 2008, 47, 42-47. (e) Mukherjee, S.; Yang, J. W.; Hoffmann, S.;
List, B. Chem. Rev. 2007, 107, 5471-5569 (f) Erkkilä, A.; Majander, I.;
Pihko, P. M. Chem. Rev. 2007, 107, 5416-5470. (g) Marigo, M.;
Jørgensen, K. A. Chem. Commun. 2006, 2001-2011. (h) Lelais, G.;
MacMillan, D. W. C. Aldrichimica Acta, 2006, 39, 79-87. (i) List, B.
Chem. Commun. 2006, 819-824. (j) Notz, W.; Tanaka, F.; Barbas, C. F.
Acc. Chem. Res. 2004, 37, 580-591.
[8] (a) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433–9520. (b) For
[2] (a) Schoeller, W. W.; Niemann, J.; Rademacher, P. J. Chem. Soc.,
Perkin Trans. 2. 1988, 369-373. (b) Renaud, P.; Schubert, S. Angem
Chem. Int. Ed. 1990, 29, 433-434. (c) Shono, T.; Matsumura, Y.;
Hamaguchi, H.; Imanishi, T.; Yoshida, K. Bull. Chem. Soc. Jpn. 1978,
51, 2179-2180. (d) Chiba, T.; Okimoto, M.; Nagai, H.; Takata, Y. J. Org.
Chem. 1979, 44, 3519-3523. (e) Audebert, P.; Bekolo, H.; Cossy, J.;
Bouzide, A. J. Electroanaly. Chem. 1995, 389, 215-218. (f) Eilenberg,
W.; Schäfer, H. J. Tetrahedron Lett. 1984, 25, 5023-5026. (g)
Narasaka, K.; Okauchi, T.; Tanaka, K.; Murakami, M. Chem. Lett. 1992,
an
internet
bond-energy
database:
[9] A model enamine ester derived from iso-propylamine was used for
DFT calculation.
(The following will be filled in by the editorial staff)
Manuscript received: XXXX, 2017
Revised manuscript received: XXXX, 2017
Accepted manuscript online: XXXX, 2017
This article is protected by copyright. All rights reserved.