C O M M U N I C A T I O N S
Table 1. KR of 2-Oxazolidinones Using Cl-PIQ (2)a
In conclusion, we have achieved for the first time kinetic
resolution of chiral 2-oxazolidinones via catalytic, highly enantio-
selective N-acylation. Besides providing a convenient route to these
compounds in enantiopure form, these findings pave the way for
further exploration of enantioselective N-acylation of other classes
of chiral secondary amides. Studies in this direction are currently
underway in our laboratory.
entry
substrate
R
′
solvent
time (h)
% conv
s
1
2
3
4a
4a
4a
4a
4a
4a
4a
4a
4a
4a
4b
4c
4d
4e
4f
5a
5b
5c
5d
5e
6a
6b
Me
Et
i-Pr
CHCl3
3
3.5
24
24
24
19
24
24
24
24
17
19
17
15
16
21.5
10
10
28
19
24
15
43
45
42
16
<3
44
17
25
12
7
46
44
50
47
0
43
40
49
50
49
43
48
1.3
10
17
CHCl3
CHCl3
CHCl3
4
Ph
-5.5
ND
24
5b
t-BuO CHCl3
6
7
8
9
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
i-Pr
EtMe2COH
THF
MeCN
EtOAc
12
3
8
9
38
44
25
16
Acknowledgment. We thank NIGMS (R01 GM072682) and
Washington University for financial support. Mass spectrometry
was provided by the Wash. U. Mass Spectrometry Resource, an
NIH Research Resource (Grant No. P41RR0954).
10b,c
11
12c
13
14
15b
16d
17c
18e
19
20
21c
22
PhMe
EtMe2COH
EtMe2COH
EtMe2COH
EtMe2COH
CDCl3
EtMe2COH
EtMe2COH
EtMe2COH
EtMe2COH
EtMe2COH
EtMe2COH
EtMe2COH
Supporting Information Available: Experimental procedures and
NMR spectra. These materials are available free of charge via the
ND
55
1.1 × 102
References
70
28
18
26
(1) Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249.
(2) Enzymatic enantioselective acylation of alcohols: (a) Sih, C. J.; Wu, S.-
H. Top. Stereochem. 1989, 19, 63. (b) Klibanov, A. M. Acc. Chem. Res.
1990, 23, 114. (c) Schoffers, E.; Golebiowski, A.; Johnson, C. R.
Tetrahedron 1996, 52, 3769.
(3) Enzymatic enantioselective acylation of amines: van Rantwijk, F.;
Sheldon, R. A. Tetrahedron 2004, 60, 501.
19
a Unless specified otherwise, the following conditions were used: 0.2
M substrate, 0.75 equiv (R′CO)2O, 0.75 equiv i-Pr2NEt, 4 mol % (R)-2,
0 °C. b RT. c Incompletely dissolved substrate at 0.2 M. d 8 mol % (R)-2
was used. e Incompletely dissolved substrate at 0.1 M.
(4) For recent reviews, see: (a) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed.
2005, 44, 3974. (b) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004,
43, 5138. (c) Jarvo, E. R.; Miller, S. J. Asymmetric Acylation. In
ComprehensiVe Asymmetric Catalysis, Supplement 1; Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Berlin, Heidelberg,
2004; Chapter 43. (d) France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T.
Chem. ReV. 2003, 103, 2985.
Table 2. KR of 2-oxazolidinones Using BTM (3)
a
a
entry
substrate
eeSM
eeP
time (h)
%conva
sa
(5) Arai, S.; Bellemin-Laponnaz, S.; Fu, G. C. Angew. Chem., Int. Ed. 2001,
40, 234.
1b
4a
4b
4c
4d
4e
6a
6b
6c
5a
4a
5a
5b
5c
5d
5e
54.1
71.6
87.6
70.5
96.0
71.7
72.3
96.2
17.0
89.6
48.4
80.4
56.6
70.5
98.7
98.3
99.1
97.8
95.7
98.2
98.5
91.8
93.2
98.3
96.4
99.1
99.1
98.2
95.2
97.4
8.5
21
14
8.5
6
36
42
47
42
49
43
44
51
15
48
33
45
37
43
50
2.0 × 102
4.5 × 102
2.6 × 102
(6) Resolution of chiral oxazolidinones has been achieved by (a) chromato-
graphic separation of their diastereomeric N-acyl derivatives: Ishizuka,
T.; Kimura, K.; Ishibuchi, S.; Kunieda, T. Chem. Lett. 1992, 991; and (b)
enantioselective deacylation of N-acyl-oxazolidinones via catalytic, asym-
metric borane reduction: Hashimoto, N.; Ishizuka, T.; Kunieda, T.
Tetrahedron Lett. 1998, 39, 6317.
2b
3b
4b
96
5b
4.3 × 102
6b
6
6
3.0 × 102
(7) (a) Kano, S.; Yokomatsu, T.; Shibuya, S. Heterocycles 1990, 31, 1711.
(b) Ager, D. J.; Allen, D. R.; Schaad, D. R. Synthesis 1996, 1283.
(8) (a) Flynn, D. L.; Zelle, R. E.; Grieco, P. A. J. Org. Chem. 1983, 48,
2424. (b) Grehn, L.; Ragnarsson, U. Angew. Chem., Int. Ed. Engl. 1985,
24, 510. (c) Hansen, M. M.; Harkness, A. R.; Coffey, D. S.; Bordwell, F.
G.; Zhao, Y. Tetrahedron Lett. 1995, 36, 8949.
(9) (a) Birman, V. B.; Uffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J. Am.
Chem. Soc. 2004, 126, 12226. (b) Birman, V. B.; Jiang, H. Org. Lett.
2005, 7, 3445. (c) Birman, V. B.; Li, X.; Jiang, H.; Uffman, E. W.
Tetrahedron 2006, 62, 285. (d) Birman, V. B.; Li, X. Org. Lett. 2006, 8,
1351.
(10) Selectivity factor is defined as s ) k(fast-reacting enantiomer)/k(slow-
reacting enantiomer). Both % conversion and selectivity factor are
calculated from ee’s of the product and the recovered starting material.1
Average values of duplicate runs are given for the % ee, % C and s.
(11) Ruble, J. C.; Tweddell, J.; Fu, G. C. J. Org. Chem. 1998, 63, 2794.
(12) Gradual dissolution of a racemic substrate in the course of KR will lead
to a lower apparent selectivity compared with that in a homogeneous
reaction.
(13) Hamersak, Z.; Ljubovic, E.; Mercep, M.; Mesic, M.; Sunjic, V. Synthesis
2001, 1989. In the original synthetic route, (-)-cytoxazone 6d was
obtained by KR of its racemate via enzymatic O-acylation with s ) 39.
(14) Isolation, structure elucidation, and biological activity: (a) Kakeya, H.;
Morishita, M.; Kobinata, K.; Osono, M.; Ishizuka, M.; Osada, H. J.
Antibiot. 1998, 51, 1126. (b) Kakeya, H.; Morishita, M.; Koshino, H.;
Morita, T.-i.; Kobayashi, K.; Osada, H. J. Org. Chem. 1999, 64, 1052.
For a list of leading references to synthesis of 6d, see: (c) Kim, J. D.;
Kim, I. S.; Jin, C. H.; Zee, O. P.; Jung, Y. H. Org. Lett. 2005, 7, 4025.
(15) (a) KR of 0.814 g of (()-5c with Cl-PIQ produced 40% isolated yield of
the N-acylated product with 92.1% ee, 48% recovered SM with 75.6%
ee (CHPLC ) 45%, s ) 56) and 79% recovered catalyst. (b) KR of 1.00 g
of (()-4e with BTM gave 51% isolated yield of the product with 96.7%
ee, 48% recovered SM with 99.4% ee (CHPLC ) 51%, s ) 3.5 × 102) and
60% recovered catalyst. (c) KR of 0.753 g of (()-6c with BTM gave
48% isolated yield of the product with 91.3% ee, 44% recovered SM
with 97.3% ee (CHPLC ) 52%, s ) 94) and 62% recovered catalyst. See
experimental details in Supporting Information.
7b
50
8b
5.75
8.5
5
12
7
8.5
7
6.5
1.1 × 102
1.3 × 102
1.7 × 102
3.4 × 102
5.2 × 102
2.0 × 102
9b
10c
11c
12c
13c
14c
15c
88
3.9 × 102
a Averages of duplicate runs. b General conditions: 0.2 M substrate, 0.75
equiv (i-PrCO)2O, 0.75 equiv i-Pr2NEt, 4 mol % (R)-3, Na2SO4, CHCl3, rt.
c General conditions: 0.2 M substrate, 1.5 equiv (i-PrCO)2O, 0.75 equiv
i-Pr2NEt, 8 mol % (R)-3, Na2SO4, CHCl3, rt.
at room temperature in chloroform with selectiVity factors 2.5 to
27(!) times higher than those obtained with 2.13
We were finally able to resolve substrate 6c with high enantio-
selectivity, taking advantage of its improved solubility under these
conditions (entry 8). This compound has previously served as an
intermediate in a concise racemic synthesis13 of cytoxazone (6d),
a naturally occurring oxazolidinone possessing cytokine modulating
activity.14 BTM-catalyzed KR of gem-dimethyl substituted sub-
strates, 5a-e, proceeded more slowly than that of their unsubstituted
counterparts 4a-e (cf., e.g., entries 1 and 9). In most of these cases,
high conversions were obtained on a convenient time scale by
doubling the catalyst and the anhydride loadings (entries 10-15).
Efficacy of both Cl-PIQ and BTM catalysts on preparative scale
was confirmed experimentally.15
JA061560M
9
J. AM. CHEM. SOC. VOL. 128, NO. 20, 2006 6537