6504
G. Bartoli et al. / Tetrahedron Letters 47 (2006) 6501–6504
7. (a) Li, J.; Wang, X.; Zhang, Y. Tetrahedron Lett. 2005, 46,
120.8, 125.6, 127.2, 129.8, 131.2, 134.0, 134.7, 143.8, 165.3,
167.2. Anal. Calcd for C13H11F3O4 (288.23): C, 54.17; H,
3.84: Found: C, 54.13; H, 3.80. Compound 7d: FTIR
(neat): 2968, 1732, 1626 cmÀ1; (E) 1H NMR (CDCl3,
200 MHz): d 10.91 (bs, 1H), 7.91 (s, 1H), 7.55–7.20 (m,
4H), 4.36 (q, 2H, J = 7.14 Hz), 2.40 (s, 3H), 1.38 (t, 3H,
J = 7.12 Hz); 13C NMR (CDCl3, 50 MHz): d 18.9, 27.0,
63.0, 119.7, 128.0, 128.6, 132.3, 140.5, 144.6, 160.7, 163.2;
(Z) 1H NMR (CDCl3, 200 MHz) d 10.30 (bs, 1H), 7.85 (s,
1H), 7.55–7.20 (m, 4H), 4.26 (q, 2H, J = 7.02 Hz), 2.40 (s,
3H), 1.29 (t, 3H, J = 7.08 Hz); 13C NMR (CDCl3, 50
MHz): d 19.2, 27.0, 62.7, 120.5, 128.0, 128.6, 132.3, 140.5,
144.5, 165.0, 166.2. Anal. Calcd for C13H14O4 (234.25): C,
66.65; H, 6.02: Found: C, 66.62; H, 5.98. Compound 7e:
FTIR (neat): 2982, 1731, 1634 cmÀ1; (E) 1H NMR
(CDCl3, 200 MHz): d 11.03 (bs, 1H), 8.02 (s, 1H), 7.57–
7.32 (m, 4H), 4.52 (q, 2H, J = 7.32 Hz), 3.86 (s, 3H), 1.29
(t, 3H, J = 7.10 Hz); 13C NMR (CDCl3, 50 MHz): d 18.6,
54.6, 60.3, 117.1, 119.7, 120.9, 129.7, 142.1, 159.3, 160.8,
5233–5237; A number of diverse approaches to trisubsti-
tuted alkenes can be chosen, and useful protocols of cross-
coupling reactions palladium complexes promoted have
been shown by Negishi ((b) Zeng, X.; Qian, M.; Hu, Q.;
Negishi, E. Angew. Chem., Int. Ed. 2004, 43, 2259–2263);
However, these procedures suffer from toxicity and air and
moisture sensibility, even if recently Molander reported
cross-coupling reactions of more stable derivatives than
common organometallic compounds (Molander, G. A.;
Yokoyama, Y. J. Org. Chem. 2006, 71, 2493–2498).
8. Besavaiah, D.; Sharada, D. S.; Veerendhar, A. Tetrahedron
Lett. 2004, 45, 3081–3083, and references cited therein.
9. (a) Harjani, J. R.; Nara, S. J.; Salunkhe, M. M.
Tetrahedron Lett. 2002, 43, 1127–1130; (b) Tiezte, L. F.;
Beifuss, U. In Comprehensive Organic Synthesis; Trost, B.
M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; p
341; (c) Jones, G. Org. React. 1967, 15, 204–272.
10. Nigmatov, A. G.; Serebryakov, E. P. Bull. Acad. Sci.
USSR Div. Chem. Sci. (Engl. Trans.) 1991, 40, 961–970.
11. Tanaka, M.; Oota, O.; Miramatsu, H.; Fujiwara, K. Bull.
Chem. Soc. Jpn. 1988, 61, 2473–2477.
12. The use of other solvents (ether, THF, dichloromethane,
nitromethane, DMF, toluene) led to lower yields. The best
result (38% yield) was observed in nitromethane.
1
162.0; (Z) H NMR (CDCl3, 200 MHz) d 10.64 (bs, 1H),
7.96 (s, 1H), 7.56–7.32 (m, 4H), 4.50 (q, 2H, J = 7.10 Hz),
4.00 (s, 3H), 1.21 (t, 3H, J = 7.03 Hz); 13C NMR (CDCl3,
50 MHz): d 19.0, 55.3, 60.9, 116.9, 119.1, 120.8, 130.0,
143.0, 160.8, 164.9, 167.2; MS (EI) m/z: 206, 161, 134, 77,
65, 51. Anal. Calcd for C13H14O5 (250.25): C, 62.39; H,
5.64: Found: C, 62.37; H, 5.58. Compound 7f: FTIR
(neat): 2975, 1730, 1625 cmÀ1; (E) 1H NMR (CDCl3,
200 MHz): d 10.00 (bs, 1H), 8.20–8.13 (m, 1H), 8.08–8.01
(m, 1H), 7.86–7.80 (m, 2H), 7.69 (s, 1H), 7.60–7.48 (m,
4H), 4.49 (q, 2H, J = 6.99 Hz), 1.32 (t, 3H, J = 7.02 Hz);
13C NMR (CDCl3, 50 MHz): d 19.2, 59.4, 115.8, 123.9,
126.4, 126.9, 143.0, 143.5, 145.4, 163.7, 164.7; (Z) 1H
NMR (CDCl3, 200 MHz) d 10.23 (bs, 1H), 8.20–8.13 (m,
1H), 8.10–8.01 (m, 1H), 7.80–7.74 (m, 2H), 7.69 (s, 1H),
7.43–7.28 (m, 4H), 4.52 (q, 2H, J = 6.14 Hz), 1.29 (t, 3H,
J = 7.10 Hz); 13C NMR (CDCl3, 50 MHz): d 18.7, 61.8,
116.4, 123.5, 124.9, 129.5, 142.8, 144.0, 145.0, 165.9, 167.5;
MS (EI) m/z: 177, 150, 92, 78, 53, 45. Anal. Calcd for
C11H11NO4 (221.21): C, 59.72; H, 5.01; N, 6.33: Found: C,
59.70; H, 4.96; N, 6.34.
13. The major product identified by GC–MS was 1-(tert-
butyl)-3-ethyl-2-[hydroxy(phenyl)methyl]malonate.
14. Bartoli, G.; Bellucci, M. C.; Petrini, M.; Marcantoni, E.;
Sambri, L.; Torregiani, E. Org. Lett. 2000, 2, 1791–1793.
15. Bartoli, G.; Bosco, M.; Marcantoni, E.; Massaccesi, M.;
Sambri, L.; Torregiani, E. J. Org. Chem. 2001, 66, 4430–
4432.
16. A typical procedure for preparation of 7 is as follows:
to a stirred suspension of aldehyde 4 (0.5 mmol) and
cerium(III) chloride heptahydrate (0.25 g, 0.675 mmol) in
acetonitrile (5 mL) was added sodium iodide (0.1 g,
0.675 mmol), followed by ETBM 5 (0.11 g, 0.6 mmol)
and the resulting mixture was stirred at room temperature
until complete consumption of aldehyde 4 (Table 1). Then
the reaction mixture was refluxed until no intermediate 6
remains as monitored by GC. The reaction progress was
monitored by withdrawing aliquots which were analyzed
by GC, and the products were identified by GC–MS. After
cooling, the reaction mixture was diluted with dichloro-
methane and treated with 0.5 N HCl (10 mL). The organic
layer was separated, and the aqueous layer was extracted
with dichloromethane. The combined organic layers were
evaporated, the residue was dissolved in 10% NaHCO3
solution (15 mL), and the bicarbonate layer was washed
with ether. Bicarbonate solution was then made acidic to
pH 3 and extracted with dichloromethane. The organic
layer was washed with water and brine, dried over
anhydrous Na2SO4, and evaporated to give arylidenemal-
onate 7 as an oil, which was spectroscopically pure.
Spectral data of products not reported in the literature are
listed as follows: compound 7b: FTIR (neat): 2978, 1723,
17. Tan, C. Y. K.; Weaver, D. F. Tetrahedron 2002, 58, 7449–
7461.
18. Yamashita, K.; Tanaka, T.; Hayashi, M. Tetrahedron
2005, 61, 7981–7985.
19. (a) Hong, W. P.; Lee, K.-J. Synthesis 2005, 33–38; (b)
Mahender, G.; Chowdhury, N.; Banerjee, J. Synthesis
2005, 1000–1002; (c) Schirmeister, T.; Otto, H. H. J. Org.
Chem. 1993, 58, 4819–4822; (d) Jung, M. E.; Buszek, K. R.
J. Am. Chem. Soc. 1988, 110, 3965–3969; (e) Srinivason,
A.; Richards, K. D.; Olsen, R. K. Tetrahedron Lett. 1976,
12, 891–894.
20. Corey, E. J.; Fraenkel, G. J. Am. Chem. Soc. 1953, 75,
1168–1172.
21. Bartoli, G.; Marcantoni, E.; Sambri, L. Synlett 2003,
2101–2116.
22. Marotta, E.; Foresti, E.; Marcelli, T.; Peri, F.; Righi, P.;
Scardovi, N.; Rosini, G. Org. Lett. 2002, 4, 4451–4453.
23. Bartoli, G.; Bosco, M.; Giuliani, A.; Marcantoni, E.;
Palmieri, A.; Petrini, M.; Sambri, L. J. Org. Chem. 2004,
69, 1290–1297.
24. It is known that Knoevenagel condensation catalyzed by
Lewis acids does not show formation of the Michael
addition, see: Prajapati, D.; Sandu, J. S. Chem. Lett. 1992,
1945–1946.
1
1633 cmÀ1; (E) H NMR (CDCl3, 200 MHz): d 10.85 (bs,
1H), 7.93 (s, 1H), 7.67–7.55 (m, 4H), 4.30 (q, 2H,
J = 6.96 Hz), 1.28 (t, 3H, J = 7.00 Hz); 13C NMR (CDCl3,
50 MHz): d 18.7, 62.8, 113.1, 120.3, 121.0, 125.2, 127.6,
131.0, 131.4, 134.7, 160.8, 163.9; (Z) 1H NMR (CDCl3,
200 MHz) d 10.85 (bs, 1H), 7.87 (s, 1H), 7.67–7.55 (m,
4H), 4.30 (q, 2H, J = 7.02 Hz), 1.25 (t, 3H, J = 7.03 Hz);
13C NMR (CDCl3, 50 MHz): d 19.2, 61.3, 112.9, 120.0,