Published on Web 03/28/2003
A Folded, Secondary Structure in Step-Growth Oligomers
from Covalently Linked, Crowded Aromatics
Wei Zhang, Dana Horoszewski, John Decatur, and Colin Nuckolls*
Contribution from the Department of Chemistry, Columbia UniVersity,
New York, New York 10027
Received January 1, 2003; E-mail: cn37@columbia.edu
Abstract: This study delineates general methods to create a new class of folded oligomers by covalently
attaching overcrowded aromatics to each other. Crucial to observing the secondary structure in these
oligomers was the employment of C-shaped linkers. These linkers preorganize the strands to form
intramolecular hydrogen bonds. In solution, one- and two-dimensional 1H NMR data show well-defined
columnar conformations. The side chains in these oligomers are critical for the secondary structure to
emerge in solution. Using tris(dodecyloxy)phenethyl side chains in combination with tert-butyl side chains
in the terminal subunit provides a soluble trimer and prevents intermolecular association above millimolar
concentrations. This new folding motif, formed through a synergy between hydrogen bonds and π-stacking,
is so robust that even dimers have secondary structure in solution.
Introduction
In recent years, there has been intense interest in the design,
synthesis, and study of abiotic oligomers of defined length that
fold into well-defined secondary structures known as foldamers.1
Crowded aromatics such as 1 (Figure 1a) were recently shown2
to be a general method to create discotic-like liquid crystals3
held together by hydrogen bonds.4 Detailed below are the
synthetic methods to covalently attach these mesogens to each
other (Figure 1b) and data showing that only when certain linkers
are employed do the oligomers fold into well-defined columnar
conformations in solution. This new folded motif, formed
through a synergy between hydrogen bonds1 and π-stacking,5
Figure 1. (a) Previously reported mesogen.2 (b) Schematic representing a
covalently linked trimer of 1.
is so robust that even dimers have secondary structures in
solution.
(1) For foldamers, see: (a) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F.
Chem. ReV. 2001, 101, 3219-3232. (b) Hill, D. J.; Mio, M. J.; Prince, R.
B.; Hughes, T. S.; Moore, J. S. Chem. ReV. 2001, 101, 3893-4011. (c)
Seebach, D.; Beck, A. K.; Rueping, M.; Schreiber, J. V.; Sellner, H. Chimia
2001, 55, 98-103.
(2) (a) Bushey, M. L.; Hwang, A.; Stephens, P. W.; Nuckolls, C. J. Am. Chem.
Soc. 2001, 123, 8157-8158. (b) Bushey, M. L.; Hwang, A.; Stephens, P.
W.; Nuckolls, C. Angew. Chem., Int. Ed. 2002, 41, 2828-2831. (c) Nguyen,
T.-Q.; Bushey, M. L.; Brus, L. E.; Nuckolls, C. J. Am. Chem. Soc. 2002,
124, 15051-15054.
(3) For leading references on discotic liquid crystals, see: (a) Guillon, D. Struct.
Bonding 1999, 95, 41-82. (b) Chandrasekhar, S.; Prasad, S.; Krishna, A.
Contemp. Phys. 1999, 40, 237-245. (c) Chandrasekhar, Ranganath, G. S.
Rep. Prog. Phys. 1990, 53, 57-84. (d) Boden, N.; Bushby, R. J.; Clements,
J.; Movaghar, B. J. Mater. Chem. 1999, 9, 2081-2086.
Results and Discussion
Synthesis. To screen for the efficacious linkers and side
chains, a synthetic method is required that differentiates the
amide side chains of 1. The synthesis of the monoacid, diamides
6-8 is shown in Scheme 1.6 The hexasubstituted aromatic core
is prepared by a Lewis acid-induced double chloromethylation
of methyl 2,4,6-tris(dodecyloxy)benzoate.7 Conversion to di-
acetate 48 followed by saponification and oxidation9 produces
the diacid, monoester 5. The acid functions are coupled with
(4) Hydrogen bonds used to stabilize π-stacks: (a) Matsunaga, Y.; Miyajima,
N.; Nakayasu, Y.; Sakai, S.; Yonenaga, M. Bull. Chem. Soc. Jpn. 1988,
61, 207-210. (b) Brunsveld, L.; Zhang, H.; Glasbeek, M.; Vekemans, J.
A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122, 6175-6182 and
references therein. (c) Yasuda, Y.; Iishi, E.; Inada, H.; Shirota, Y. Chem.
Lett. 1996, 7, 575-576. (d) Lightfoot, M. P.; Mair, F. S.; Pritchard, R. G.;
Warren, J. E. J. Chem. Soc., Chem. Commun. 1999, 19, 1945-1946. (e)
Ranganathan, D.; Kurur, S.; Gilardi, R.; Karle, I. L. Biopolymers 2000,
54, 289-295. (f) Paleos, C. M.; Tsiourvas, D. Angew. Chem., Int. Ed. Engl.
1995, 34, 1696-1711 and references therein. (g) Brienne, M. J.; Gabard,
J.; Lehn, J. M.; Stibor, I. J. Chem. Soc., Chem. Commun. 1989, 24, 1868-
70. (h) Goldmann, D.; Dietel, R.; Janietz, D.; Schmidt, C.; Wendorff, J. H.
Liq. Cryst. 1998, 24, 407-411. (i) Ungar, G.; Abramic, D.; Percec, V.;
Heck, J. A. Liq. Cryst. 1996, 21, 73-86. (j) Percec, V.; Ahn, C.-H.; Bera,
T. K.; Ungar, G.; Yeardley, D. J. P. Chem.- Eur. J. 1999, 5, 1070-1083.
(k) Malthete, J.; Levelut, A. M.; Liebert, L. AdV. Mater. 1992, 4, 37-41.
(l) Pucci, D.; Veber, M.; Malthete, J. Liq. Cryst. 1996, 21, 153-155.
(5) Foldamers that utilize π-stacking: (a) see ref 1b. (b) Lokey, R. S.; Iverson,
B. L. Nature 1995, 375, 303-305. (c) Tanatani, A.; Yamaguchi, K.;
Azumaya, I.; Fukutomi, R.; Shudo, K.; Kagechika, H. J. Am. Chem. Soc.
1998, 120, 6433-6442.
(6) Spectra and experimental procedures are contained in the Supporting
Information.
(7) By the method of: Schirch, P. F. T.; Boekelheide, V. J. Am. Chem. Soc.
1981, 103, 6873-6878.
(8) Similar to: (a) Wallenfels, K.; Witzler, F.; Friedrich, K. Tetrahedron 1967,
23, 1845-1855. (b) Anthony, J. E.; Khan, S. I.; Rubin, Y. Tetrahedron
Lett. 1997, 38, 3499-3502.
(9) A two-step oxidation sequence was used first to yield the bis(aldehyde)
((a) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994,
7, 639-666) and then the bis(carboxylic acid) ((b) Lindgren, B. O.; Nilsson,
T. Acta Chem. Scand. 1973, 27, 888).
9
4870
J. AM. CHEM. SOC. 2003, 125, 4870-4873
10.1021/ja034001d CCC: $25.00 © 2003 American Chemical Society