Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C5CC05117G
COMMUNICATION
Journal Name
6
For reviews, see; (a) G. Brieger, T. J. Nestrick, Chem. Rev.,
cleavage and the deuterium transfer are possible, leading to the
elimination of 4a to produce 3u. This bond cleavage is
understandable by assuming a relatively stable ion pair V composed
of the triazolium cation and the ester enolate. Scheme 3(b) shows
the mechanism of the reaction of I with D2O to give 3v. Importantly,
this clear difference in the deuterium incorporation between 3u
and 3v supports the fact that the reaction mechanism, involving the
D2O addition to III or I and the subsequent deuterium transfer, is
reasonable. This proposed mechanism indicates that two electron-
withdrawing substituents at the 1,2 positions of the unsaturated
substrates are required to promote the initial Michael addition and
the C-C bond cleavage, which is consistent with the experimental
results. If the reaction of II with D2O generates VIII (Scheme 3(c)),
the α,β-dideuterated product, 3w, would be obtained, but this is
not the case. Thus, this result also supports the fact that the
hydrogenation of fumarates goes through the deoxy-Breslow
intermediate.
1974, 74, 567; (b) R. Noyori, S. Hashiguchi, Acc. Chem. Res.
1997, 30, 97; (c) M. J. Palmer, M. Wills, Tetrehedron Asymm.,
1999, 10, 2045; (d) S. Gladiali, E. Alberico, Chem. Soc. Rev.,
2006, 35, 226.
L. C. Blaszczak, J. E. McMurry, J. Org. Chem., 1974, 39, 258.
T. Sato, S. Watanabe, H. Kiuchi, S. Oi, Y. Inoue, Tetrahedron
Lett., 2006, 47, 7703.
A.G. Campaña, R. E. Estévez, N. Fuentes, R. Robles, J. M.
Cuerva, E. Buñuel, D. Cárdenas, J. E. Oltra, Org. Lett., 2007, 9,
2195.
7
8
9
10 R. Barrios-Francisco, J. J. García, Inorg. Chem. 2009, 48, 386.
11 For a recent review, see; M. N. Hopkinson, C. Richer, M.
Schedler, F. Glorius, Nature, 2014, 510, 485.
12 For recent reviews (a) H. U. Vora, T. Rovis, Aldrichimica Acta
2011, 44, 3; (b) V. Nair, R. S. Menon, A. T. Biju, C. R. Sinu, R.
R. Paul, A. Jose and V. Sreekumar, Chem. Soc. Rev., 2011, 40
5336; (c) K. Hirano, I. Piel, F. Glorius, Chem. Lett. 2011, 40
786; (d) X. Bugaut, F. Glorius, Chem. Soc. Rev., 2012, 41
3511; (e) J. Mahatthananchai, J. W. Bode, Acc. Chem. Res.
,
,
,
2014, 47, 696; (f) H. U. Vora, P. Wheeler, T. Rovis, Adv. Synth.
Catal. 2012, 354, 1617; (g) A. Grossmann, D. Enders, Angew.
Chem. Int. Ed. 2012, 51, 314; (h) S. D. Sarkar, A. Biswas, R. C.
Samanta, A. Studer, Chem. Eur. J. 2013, 19, 4664; (i) S. R.
Yetra, A. Patra, A. T. Biju Synthesis 2015, 47, 1357.
The mechanism of the hydrogenation of maleimides was
found to be different from that of the fumarates (Scheme 3(d)). In
contrast to the reactions of I and III derived from 1a, the reactions
of the deoxy-Breslow intermediates XI from maleimides (1l and 1m)
with water did not give the hydrogenated products (3l or 3m). In
addition, the hydrogenation of 1m with D2O gave the hydrogenated
product 3t and deoxy-Breslow intermediate 5t in comparable yields
(Scheme 1). Accordingly, in the case of the maleimides (1l and 1m),
the zwitterionic intermediate X undergoes proton transfer to give XI
but no further addition of water. Instead, X also reacts with water
to directly generate the hydroxyl-functionalized intermediate XII,
resulting in the production of 3l or 3m. Since the formation of
deoxy-Breslow intermediate from a carbodiimide (1p) and an azo
compound (1q) is impossible, it is reasonable to assume that the
mechanism of the transfer hydrogenations of 1p and 1q is similar to
those of 3l and 3m.
13 (a) C. Fischer, S. W. Smith, D. A., Powell, G. C. Fu, J. Am.
Chem. Soc. 2006, 128, 1472; (b) S. Matsuoka, Y. Ota, A.
Washio, A. Katada, K. Ichioka, K. Takagi, M. Suzuki, Org. Lett.
2011, 13, 3722; (c) A. T. Biju, M. Padmanaban, N. E. Wurz, F.
Glorius, Angew. Chem. Int. Ed. 2011, 50, 8412; (d) R. L.
Atienza, H. S. Roth, K. A. Scheidt, Chem. Sci. 2011, 2, 1772; (e)
T. Kato, Y. Ota, S. Matsuoka, K. Takagi, M. Suzuki, J. Org.
Chem. 2013, 78, 8739; (f) S. Matsuoka, S. Namera, A.
Washio, K. Takagi, M. Suzuki, Org. Lett. 2013, 15, 5916; (g) T.
Kato, S. Matsuoka, M. Suzuki, J. Org. Chem. 2014, 79, 4484;
(h) M. Schedler, N. E. Wurz, C. G. Daniliuc, F. Glorius Org.
Lett. 2014, 16, 3134; (i) S. Matsuoka, M. Nakazawa, M.
Suzuki, Bull. Chem. Soc. Jpn. doi:10.1246/bcsj.20150048; For
reviews, (j) X.-Y. Chen, S. Ye Org. Biomol. Chem., 2013, 11
7991; (k) S. J. Ryan, L. Candish, D. W. Lupton, Chem. Soc.
Rev., 2013, 42, 4906.
,
In conclusion, we have developed the transfer hydrogenations
promoted by 1,2,4-triazol-5-ylidene NHC and water. The substrate
14 B. E. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863.
15 T. Y. S. But, P. H. Toy, Chem. Asian J. 2007,
16 R. Appel, Angew. Chem. Int. Ed. 1975, 14, 801.
17 (a) D. Enders, K. Breuer, G. Raabe, J. Runsink, J. H. Teles, J.-P.
Melder, K. Ebel, S. Brode, Angew. Chem. Int. Ed. 1995, 34
1021; (b) D. Enders, K. Breuer, J. Runsink, J. H. Teles, Liebigs
Ann., 1996, 12, 2019.
18 A. Berkessel, S. Elfert, Adv. Synth. Catal. 2014, 356, 571.
2, 1340.
scope includes
a variety of electron deficient unsaturated
compounds, such as Michael acceptors, imines, a carbodiimide, and
an azo compound. The deuterium-labeling experiments using D2O
and the reactions of the deoxy-Breslow intermediates clearly
propose the detailed reaction mechanism including the proton
transfer process. It depends on the substrates as to whether or not
the deoxy-Breslow intermediates are involved. This hydrogenation
is the first reaction promoted by the oxidation of NHC, and also first
reaction of deoxy-Breslow intermediates or the zwitterionic
intermediates derived from NHC with water. Reaction discoveries
using this concept will be highly expected.
,
19 (a) P. Tang, W. Wang, T. Ritter, J. Am. Chem. Soc. 2011, 133
11482. (b) X. Shen, C. N. Neumann, C. Kleinlein, N. W.
Goldberg, T. Ritter, Angew. Chem. Int. Ed. 2015, 54, 5662.
,
20 (a) S. S. Sohn, J. W. Bode, Angew. Chem. Int. Ed. 2006, 45
,
6021; (b) H. U. Vora, T. Rovis, J. Am. Chem. Soc., 2010, 132
2860. (c) For a review involving NHC transition metal
catalysis and organocatalysis using water, see; E. Levin, E.
,
Ivry, C. E. Diesendruck, N. G. Lemcoff, Chem. Rev. 2015, 115
4607.
,
Notes and references
1
2
H. Staudinger, J. Meyer, Helv.Chim. Acta, 1919, 2, 635.
S. A. Donald, W.R. Hertler, J. Am. Chem. Chem. Soc., 1962,
84, 3370.
3
4
W. Zang, M. Shi, Chem. Commun., 2006, 1218.
M.G. Burnett, T. Oswald, B. J. Walker, J. Chem. Soc. Chem.
Commun., 1977, 155.
5
B. Pal, P. K. Pradhan, P. Jaisankar, V. S. Giri, Synthesis, 2003,
1549.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins